
Predicting Teamwork Performance Using a Large 
Language Model to Annotate Repair and Grounding 

Utterances in Task-Based Conversations
Akshitha Kartigueyan 

Department of Computer Science 
Purdue University 

West Lafayette, IN, USA 
 0009-0007-6872-3343 

Joseph P. Salisbury 
ISR Innovations 

Riverside Research 
Melbourne, FL, USA 
0000-0002-9448-9024

Abstract— Effective teamwork relies heavily on the quality of 
communication among team members. Conversational dynamics, 
such as the use of repair and grounding mechanisms—
conversational strategies that maintain mutual understanding—
play a crucial role in promoting cohesion within a team. Here, we 
describe an approach that leverages a large language model 
(LLM) to detect repair and grounding (R&G) utterances during a 
cooperative task and evaluate how these factors can predict team 
performance. To demonstrate this, we collected and analyzed 
video data from YouTube of the cooperative multiplayer puzzle 
game Keep Talking and Nobody Explodes. Player communication 
was transcribed using speech-to-text tools to generate speaker-
labeled transcripts. Utterances were labeled for R&G mechanisms 
by an LLM using few-shot learning. Statistical analyses reveal 
distinct patterns in communication between successful and 
unsuccessful bomb defusal trials, which enabled the development 
of a model to predict task outcome.  

Keywords—Team communication, conversational dynamics, 
repair and grounding, task performance prediction 

I. INTRODUCTION

Effective communication is essential to achieving successful 
outcomes in high-stakes collaborative tasks. In such scenarios, 
teams often operate under significant time constraints and high 
levels of stress, making the quality of interactions crucial for 
performance. Effective communication enables teams to 
coordinate actions, share information accurately, and make 
timely decisions, which are vital components of success in high-
stakes environments such as emergency medical response, 
military operations, air traffic control, space missions, and 
disaster relief efforts [1], [2], [3].  

Given the potentially life-threatening nature of these tasks, 
the ability to objectively assess and enhance teamwork 
communication and performance is of paramount importance. 
Despite the significance of effective communication, there 
remains substantial challenges in accurately assessing and 
improving team interactions in real-time. Current team training 
assessment is often limited, relying on high-level checklists and 
post-hoc, subjective evaluations of performance. Traditional 
approaches often rely on manual observation and coding of team 
interactions, which are time-consuming, labor-intensive, and 
subject to human bias [4]. The development of artificial 
intelligence (AI) that can objectively assess effective 
communication offers substantial benefits to enhance team 

training and performance evaluation [5]. This capability would 
be particularly useful for continuous performance monitoring 
and adaptive training programs, where timely insights are 
crucial for corrective action and skill development [6], [7]. 

Recent advances in large language models (LLMs) have 
made it substantially more feasible for an AI to analyze 
conversation dynamics to identify behaviors that contribute to 
team success [8], [9]. For example, these systems could be 
trained to automatically detect repair and grounding (R&G) in 
conversations, which are essential for maintaining mutual 
understanding and addressing misunderstandings in high-stakes 
tasks [10]. Grounding is the interactive process by which mutual 
understanding between individuals is constructed and 
maintained, ensuring that participants are perceiving and 
accepting each other’s utterances [11], [12], [13], [14]. As part 
of maintaining common ground, repair strategies can be used to 
detect and resolve communicative problems and clarify 
misunderstandings [15]. These can include self-corrections [16], 
where a speaker recognizes and rectifies their own mistake, and 
other-initiated repairs [17], [18], where another team member 
points out and helps to correct the error. R&G helps ensure that 
all team members are on the same page, enhancing coordination 
and reducing the likelihood of errors. Thus, an AI that can detect 
R&G can provide feedback on communication effectiveness, 
helping teams recognize and correct poor communication habits 
before they become entrenched.  

Toward this goal, our study aims to evaluate: 1) the ability 
of LLMs to annotate R&G utterances in team conversations; and 
2) to identify conversational factors that are predictive of task
performance and teamwork expertise. We leverage YouTube
videos of the cooperative multiplayer game Keep Talking and
Nobody Explodes (KTaNE) as a practical source of data to
develop and demonstrate methods for analyzing conversations
that are relevant to teamwork in high-stakes tasks. In KTaNE,
one player (“the defuser”) must disarm a virtual bomb based on
instructions provided by other players (the “experts”), who have
access to a bomb defusal manual but cannot see the bomb. This
setup necessitates clear, precise, and effective communication
under time pressure, closely mimicking the communication
demands found in high-stakes real-world scenarios. The game’s
requirement for continuous verbal interaction and real-time
problem-solving makes it a rich source of data for
conversational analysis [19].



II. METHODS

A. Summary of Approach
To demonstrate predicting task performance and expertise

based on R&G, we developed the workflow summarized in 
Figure 1. Briefly, videos were identified on YouTube of KTaNE 
and downloaded so transcripts could be processed with speaker 
partitioning using Amazon Transcribe. The assignment of 
utterances to speakers was further refined using an LLM with 
few-shot prompting [20]. We then assessed the ability for LLMs 
to label R&G utterances in the diarized transcript using the 
approach from [21], comparing performance of two LLMs at 
different temperatures against manually annotated transcript 
segments. The best performing LLM was then used to label the 
complete dataset. Frequency of various R&G utterances were 
normalized and used as features, along with KTaNE puzzle 
difficulty, to train a model to predict task outcome and expertise. 

B. Video Selection and Annotation
To obtain data for analyzing team communication, we

conducted a targeted search for “Let’s Play”-style [22] videos 
on YouTube. The search term Keep Talking and Nobody 
Explodes Let’s Play was used. The following selection criteria 
were established to ensure the relevance and quality of the data: 

1. Only videos that included the entire bomb defusal
process without edits were selected.

2. Videos where players introduced additional challenges
or engaged in behaviors that distort the typical
gameplay experience were excluded.

3. Only videos featuring exactly two players were
selected: one acting as the bomb defuser and the other
as the expert providing instructions.

4. For channels with multiple KTaNE videos, preference
was given to those showcasing new pairings of players
to increase data diversity. When possible, preference
was given to pairings of opposite genders to minimize
speaker misassignment.

These criteria were selected to help ensure data we selected 
would provide a robust foundation for analyzing the impact of 
conversational dynamics on task performance.  

During the selection process, a subset of videos featuring 
professional bomb defusers (retired US Army Airborne 
Infantry) playing the game were identified. These videos were 
notable as participants clearly had training experience for how 
to communicate effectively under stress. Consequently, these 
videos were selected and analyzed as a separate “professional” 
group for comparative analysis against the “amateur” player 
population. 

To collect performance metrics for analysis, videos were 
inspected by the authors for start and stop times of each KTaNE 
puzzle, the puzzle name, the number of sub-modules in each 
puzzle, and whether each puzzle was successfully defused. In 
total, 10 videos were selected for analysis (Table 1). The chosen 
videos represent a mix of typical gameplay and expert-level 
communication, which we hypothesized would enable 
identifying factors that contribute to effective teamwork in high-
stakes environments. 

TABLE I. SUMMARY OF VIDEOS SELECTED FOR ANALYSIS 

YouTube ID Expertise Level # 
Success 

# 
Fail 

Length 
(mm:ss) 

FJ6M03H2-RU Amateur 4 2 33:10 
vF5jFFkL1p0 Amateur 2 7 41:01 
BdvdZlh1Xdo Amateur 4 4 43:23 
BjjzSbSEwXo Amateur 1 3 18:21 
AlqDjkER5Ws Amateur 0 6 29:07 
GVyfxHMYDH4 Amateur 9 4 57:25 
7a96RyJVfD8 Amateur 3 2 21:10 
dl78TfbnahI Amateur 2 4 20:48 
BYunaBkn9Ng Professional 3 0 8:19 
ESuAQHt5Dus Professional 2 1 8:43 

Totals 8 Amateur; 2 Pro 30 33 281:27 

C. Speech-to-Text with Diarization
To generate transcripts with speaker assignments, we first

used Amazon Transcribe to produce a transcript of the video 
with timestamps associated with each speaker. Prior to upload, 
we edited out advertisements that appeared at the beginning or 
end of some videos featuring the voice of another person. For 
Amazon Transcribe job settings, we specified the language as 
English and requested speaker partitioning with a maximum of 
two speakers. Amazon Transcribe provides two outputs: a 
subtitle file in the SRT format, which contains segments of 
utterances and the associated timestamps, and a JSON file which 
includes timestamps of speaker diarization. We developed a 
custom script to cross-reference timestamps between the SRT 
and JSON files to compile a transcript with alternating speaker 
IDs followed by their utterances. In some cases, discrepancies in 
timestamps resulted in blank entries. To address this, the script 
assigned the last complete or incomplete sentence from the 
previous utterance to the blank entry. If this adjustment created 
a new blank segment, the script removed the original blank entry 
and merged the previous and subsequent utterances under the 
same speaker. 

Occasionally, Amazon Transcribe struggled to diarize 
conversations involving an exchange of brief phrases between 

Fig. 1. Overview of steps to develop predictive models based on LLM-annotated repair and grounding (R&G) utterances from online videos. 

Correction of 
Utterance Assignment 

Using Large 
Language Model 

(LLM)

Labeling of Repair 
and Grounding (R&G) 

Utterances in 
Transcripts Using 

LLM & Validation

Model Training & 
Evaluation

Normalization of 
R&G Frequencies and 

Identification of 
Statistical Differences 

Between Groups

Speech-to-Text 
Transcription with 

Speaker Partitioning 
Using AWS 
Transcribe

Video Selection & 
Annotation of Mission 

Start & Stop Times, 
Difficulty, and 

Outcome



speakers. We observed this particularly in videos with players 
of the same gender. To rectify this and further refine transcripts 
where this was notable, we utilized Claude 3.5 Sonnet for LLM-
based utterance assignment correction using a prompt with 
examples of a transcript before and after manual speaker 
reassignment based on inspection of the source video. While we 
did not rigorously evaluate the accuracy of this approach, 
inspection of transcripts where this approach was applied 
showed notable improvement in speaker assignment when 
compared with source videos. 

D. R&G Labeling in Transcripts
To label R&G utterances, we used the prompt from [21]. To

compare performance of various pre-trained LLMs, we sent 
prompts with speaker-labeled transcripts to OpenAI’s GPT-4o 
and Anthropic’s Claude 3.5 Sonnet. To create a standard for 
comparing performance of LLMs, we manually labeled 
segments from two transcripts, including 128 utterances (~10 
minutes of gameplay dialogue). To assess variability in LLM 
responses, we evaluated LLM’s across a range of temperatures 
(T = 0, 0.1, 0.3, 0.5, 1) in replicates of five. During preliminary 
data analyses, we noted that successful runs featured heavy use 
of the adjacency pair [23] proactive-grounding followed by 
other-repetition. To evaluate its importance, we determined the 
frequency of this sequential pair in each puzzle attempt and 
included it in subsequent analyses as its own feature. 

E. Data Normalization
To ensure comparability across different gameplay sessions

and puzzles, we applied a data normalization process to the 
R&G labeled utterances. This process aimed to account for 
variation in the length and complexity of puzzles by 
standardizing the occurrence of R&G mechanisms relative to the 
total number of utterances labeled within each puzzle. We 
segmented labeled transcripts puzzle by puzzle, with each 
segment corresponding to a discrete defusal attempt. For each 
puzzle, we tallied the number of utterances labeled with specific 
R&G mechanisms. To normalize data, we divided the raw count 
of each R&G mechanism for a given puzzle by the total count 
of all R&G-labeled utterances in that puzzle. 

F. Statistical Analysis
To evaluate the relationship between conversational

dynamics and task performance, we conducted statistical 
analyses using the normalized values of R&G mechanisms for 
each puzzle. We performed two sets of group comparisons: 1) 
samples from puzzles that were successfully defused (“Success” 
samples) were compared with samples where the bomb 
detonated (“Failure” samples); 2) samples from professional 
military bomb defusers (“Professional” samples) were 
compared with samples from the amateur players (“Amateur” 
samples). To compare the normalized R&G values between 
groups, we performed independent T-tests using SciPy [24]. To 
filter out R&G mechanisms that were too infrequent, we only 
included those with a mean normalized value of greater than 
0.02 in at least one sample group under test. To account for 
multiple comparisons, we used the two-stage false discovery 
rate Benjamini/Hochberg correction [25], [26]. We choose an 
alpha level of 0.1 to allow for the detection of differences that 
could guide future, more rigorous studies. 

G. Model Training and Evaluation
To predict both outcome (“Success” vs. “Failure”) and

“expertise” (“Professional” vs. “Amateur”), we trained 
classification models using the normalized R&G frequencies. 
To limit the number of features and focus on the most 
informative variables, we selected the three most significant 
features from each group comparison. Given that task outcome 
may also be influenced by the complexity of the puzzle, we 
included “mission difficulty” as a fourth feature in the outcome 
model. Difficulty was calculated based on the mission structure 
of KTaNE using the formula: 

difficulty = (section # – 1) + (mission # in section – 1)
# of missions in section 

  (1) 

This formula normalizes mission difficulty across sections 
of increasing difficulty with varying numbers of missions. 

To classify both outcome and expertise, we employed a 
bagging classifier with a support vector machine (SVM) as the 
base estimator using scikit-learn [27], [28]. The SVM model 
used a linear kernel with C = 10 to control regularization, while 
the bagging ensemble leveraged 10 estimators to improve 
performance through bootstrap aggregation. To evaluate model 
performance, we used a stratified train-test split. To predict 
outcome, we reserved 25% of the data for testing. To predict 
expertise, we used a 50% split given the limited number of 
professional trials (6 total). Given there were significantly fewer 
professional samples than amateur samples, we used the 
Synthetic Minority Over-sampling Technique (SMOTE) [29] to 
create a balanced dataset for training. SMOTE was configured 
with 2 nearest neighbors due to the small number of professional 
samples. We first assessed model performance through 5-fold 
stratified cross-validation. To further validate the robustness of 
the model's accuracy, we conducted a bootstrap analysis [30]. 
We assessed performance using standard classification metrics, 
including overall accuracy, precision, recall, and F1-score. 

III. RESULTS

A. LLM Labeling Performance
Overall, Claude 3.5 Sonnet produced the most accurate

results, achieving 80.5±0.1% (mean ± S.D.) accuracy in labeling 
utterances for R&G mechanisms at a temperature T = 0 across 
five replicates. In contrast, GPT-4o exhibited a significantly 
lower accuracy of 48.5±0.1% at T = 0 (Figure 2), which 
decreased to 39.3±4.9% at T = 1. Claude 3.5 Sonnet’s accuracy 
remained consistently high (~80%) across a range of T, although 
variance increased slightly with T, up to 78.9±1.9% at T = 1. We 
selected Claude 3.5 Sonnet at T = 0 for further analyses due to 
its optimal balance of accuracy and consistency. Note that not 
all R&G mechanisms were in the annotated segments, and some 
had relatively few instances. 

B. Statistical Analysis of R&G Frequency
To explore the relationship between R&G mechanisms and

task performance, we conducted statistical comparisons of 
normalized R&G features across two sets of groupings: 1) task 
outcome (successfully defusing the bomb vs. failure), and 2) 
player expertise (professional bomb defusers vs. amateurs). 



When comparing the frequency of R&G mechanisms 
between "Success" (successful bomb defusal) and "Failure" 
(bomb detonation) sessions, we observed several significant 
differences (Figure 3A). The frequency of self-correction was 
significantly lower in successful runs compared to failed runs 
(raw p-value = 0.020; adjusted p-value = 0.060), suggesting that 
more frequent self-correction may be indicative of 
communication difficulties that negatively affect team 
performance. In contrast, other-repetition, where one player 
repeats a statement made by the other, was significantly higher 
in successful runs (raw p-value = 0.010; adjusted p-value = 
0.060). This pattern indicates that effective team coordination in 
successful trials may involve a higher reliance on repetition to 
confirm mutual understanding. Additionally, a significant 
interaction between proactive-grounding and other-repetition 
was observed. Specifically, the pairing of a proactive-grounding 
statement immediately followed by an other-repetition was 
found to be significantly more frequent in success runs (raw p-
value = 0.020; adjusted p-value = 0.060). This suggests that in 
successful teams, proactive grounding is often reinforced by 
repetition, which may serve to solidify shared understanding 
during complex tasks. 

In the comparison between "Professional" and "Amateur" 
groups, several patterns emerged (Figure 3B). Professionals 
exhibited significantly higher frequencies of other-repetition 
(raw p-value = 2.1⋅10-6; adjusted p-value = 9.4⋅10-6) and 
proactive-grounding (raw p-value = 7.4⋅10-3; adjusted p-value = 
0.022), indicating a more deliberate approach to ensuring shared 
understanding and task coordination. These behaviors may 
reflect the professionals’ training in efficient communication 
under stress, where confirming and grounding information is 
critical to mission success. Conversely, the amateurs showed 
significantly higher frequencies of self-repetition (raw p-value = 
0.040; adjusted p-value = 0.090) and self-correction (raw p-
value = 0.051; adjusted p-value = 0.092). Finally, as observed in 
the outcome comparisons, the pairing of a proactive-grounding 
statement followed immediately by an other-repetition was 
significantly higher in the professional trials compared to the 
amateur trials (raw p-value = 2.1⋅10-12; adjusted p-value = 
1.9⋅10-11). This reinforces the idea that trained professionals are 
more likely to use this specific interaction pattern, highlighting 
a communication strategy that may contribute to their superior 
task performance and reduced need for self-directed repair 
mechanisms.  

Fig. 3. Comparison of R&G mechanisms across outcome (A) and expertise 
groups (B). Error bars are standard error of the mean. Asterisks denote p-value 
< 0.1 after two-stage FDR Benjamini/Hochberg correction. 
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C. Model Evaluation Results
The model predicting outcome (success vs. failure) using the

three most significant features (other-repetition, self-correction, 
and proactive-grounding), as well as puzzle difficulty, 
performed well, achieving a test set accuracy of 88%. The model 
demonstrated good generalization capabilities, with a mean 
cross-validation score of 74±12% across 5 stratified folds. This 
variance suggests some fluctuation in performance across 
different subsets of the data but remains within an acceptable 
range given the exploratory nature of this analysis. The precision 
and recall for predicting success were 80% and 100%, 
respectively, resulting in an F1-score of 89%. For failure 
predictions, precision was 100% and recall was 75%, with an 
F1-score of 86%. This indicates that the model was more 
conservative in predicting failure (i.e., fewer false positives) 
while being highly sensitive in identifying successful outcomes. 
The overall accuracy was consistent across both labels, with a 
weighted average F1-score of 87%. Bootstrap mean accuracy of 
73±11% indicates moderate variability across resampled 
training sets. This suggests that while the model performed well 
on the test set, some sensitivity to sample variation exists, 
particularly given the relatively small sample size. 

The model predicting expertise (professional vs. amateur) 
achieved higher performance, with an accuracy of 97% on the 
test set. Cross-validation also showed strong generalization, 
with a mean cross-validation score of 98±4%, demonstrating 
very little variation across folds. The model exhibited excellent 
precision for both professional and amateur players, with values 
of 100% and 97%, respectively. Recall for amateurs was 100%, 
but recall for professionals was lower at 67%, resulting in an F1-
score of 80% for professionals and 98% for amateurs. The lower 
recall for professionals is attributable to the small sample size 
and the model's difficulty in perfectly identifying all 
professional cases. However, given the large imbalance in the 
dataset, the overall performance is strong, with a macro-
averaged F1-score of 89%. The bootstrap analysis reinforced the 
robustness of the model, with an accuracy of 93±3% (mean ± 
S.D.), indicating high consistency across resampled datasets. A
summary of model evaluation metrics is provided in Table 2.

TABLE II. SUMMARY METRICS FOR MODELS 

Model 
Target 

Test Set 
Accuracy 

Cross-
Validation 

Bootstrap 
Accuracy 

Outcome 88 % 72 ± 12 % 73 ± 11 % 

Expertise 97 % 98 ± 4 % 93 ± 3 % 

IV. DISCUSSION

A. Summary of Findings
This study set out to evaluate the use of conversational

dynamics, specifically R&G mechanisms, as predictors of task 
performance and player expertise in a high-stakes teamwork 
task. By leveraging the cooperative game KTaNE, we explored 
how effective communication can influence success and 
distinguish between professional and amateur players. The 
major findings from both the labeling of R&G utterances and 
statistical analyses of team performance provide valuable 
insights into how communication mechanisms shape team 
outcomes. 

Leveraging the R&G annotation technique used in [21], we 
found Claude 3.5 Sonnet demonstrated superior performance in 
labeling R&G, with consistently high accuracy across multiple 
temperatures. Its stability and precision at temperature = 0 make 
it a more reliable model for conversational analysis, particularly 
in the context of this study's goal to assess conversational factors 
predictive of task performance. 

The statistical analyses reveal distinct patterns in 
communication between successful and unsuccessful bomb 
defusal trials, as well as between professional and amateur 
players. Teams that successfully defused bombs relied more 
heavily on other-repetition and proactive-grounding, 
mechanisms that ensure clear communication and reinforce 
shared understanding among team members. In contrast, 
unsuccessful teams exhibited higher frequencies of self-
correction, suggesting that these teams may have experienced 
more internal communication difficulties or uncertainty, which 
could have contributed to their failures. Similarly, professional 
bomb defusers exhibited more frequent use of other-repetition 
and proactive-grounding, reinforcing the notion that team-
oriented mechanisms are integral to maintaining cohesion and 
ensuring task success. This differentiation highlights the role of 
training and experience in shaping communication strategies, 
particularly in environments that demand precise and efficient 
interaction under pressure. 

In terms of predictive modeling, both the outcome and 
expertise models demonstrated strong performance. The 
outcome model, which incorporated key R&G features along 
with puzzle difficulty, exhibited solid predictive accuracy 
(88%), though some variability was noted in cross-validation 
and bootstrap results. This suggests that while the model is 
reliable, the inclusion of additional contextual factors could 
further stabilize performance across different data subsets. The 
expertise model performed exceptionally well, achieving an 
accuracy of 97%. Despite the limited number of professional 
samples, the use of SMOTE to balance the training data proved 
effective, enabling the model to learn distinguishing patterns 
between professionals and amateurs. This result underscores the 
power of R&G frequencies in identifying expertise, even in 
datasets where class imbalance poses challenges. 

B. Implications for Research and Practice
These findings offer several important implications for both

research and practice. First, the practical use of AI-annotated 
conversational dynamics as a metric for evaluating teamwork is 
demonstrated through this study. Furthermore, the identification 
of specific R&G mechanisms—such as proactive-grounding, 
other-repetition and the sequential pairing of these—as 
predictors of success supports the notion that team-oriented 
communication is crucial in high-stakes environments. This 
suggests that training programs designed to improve team 
performance should focus on fostering these behaviors, 
emphasizing the importance of maintaining mutual 
understanding through repetition and grounding. Moreover, the 
promising predictive performance of this approach suggests that 
AI-driven tools could be developed to monitor team 
performance in real-team. These tools could provide feedback 
to trainees and supervisors, identifying potential communication 
breakdowns or deviations from optimal team behavior. 



C. Limitations
While the study presents strong evidence for the utility of

R&G mechanisms in predicting task performance and expertise, 
there are several limitations to consider. The truth data set used 
to evaluate LLMs’ ability to annotate transcripts for R&G lacked 
representation of several class labels and was of limited size. 
While the results we obtained with Claude 3.5 Sonnet surpassed 
those obtained with GPT-4 in [21], we did not evaluate the 
dataset used in that paper. Thus, while we observed similar 
performance as [21] with GPT-4o, we cannot claim Claude 3.5 
Sonnet would show similar performance gains on other datasets. 
Further validation is recommended across multiple datasets 
annotated from different sources to avoid annotator bias. LLMs 
were trained to annotate through simple prompting with 
example annotations. Fine-tuning models on larger annotated 
datasets could improve the robustness of this approach. In terms 
of predictive modeling, the small number of professional bomb 
defusers limited the generalizability of the expertise model, 
although the use of SMOTE mitigated some of these concerns. 
Future research should aim to expand the dataset to include a 
larger sample of professionals to validate and refine the model.  

V. CONCLUSION

This study demonstrates how R&G mechanisms can be key 
indicators of successful teamwork and expertise in high-stakes 
tasks. Claude 3.5 Sonnet proved to be an effective tool for 
labeling utterances, providing a solid foundation for analysis. 
The statistical and modeling results underscore the importance 
of team-oriented communication strategies, such as other-
repetition and proactive-grounding, in achieving success. These 
findings have practical implications for designing training 
programs and AI-driven tools that enhance teamwork 
performance in critical settings.  
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