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Detecting Battery Cells with Harmonic Radar
Anonymous Author(s)

ABSTRACT
Harmonic radar systems have been shown to be an effective method
for detecting the presence of electronic devices, even if the devices
are powered off. Prior work has focused on detecting specific non-
linear electrical components (such as transistors and diodes) that
are present in any electronic device. In this paper we show that
harmonic radar is also capable of detecting the presence of batteries.
We test the system onAlkaline, NiMH, Li-ion, and Li-metal batteries.
With the exception of Li-metal coin cells, we find the system can
detect the presence of batteries with 100% accuracy.

ACM Reference Format:
Anonymous Author(s). 2024. Detecting Battery Cells with Harmonic Radar.
In Proceedings of ACM Conference on Security and Privacy in Wireless and
Mobile Networks (WiSec). ACM, New York, NY, USA, 6 pages. https://doi.
org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Internet of Things (IoT) devices capture data about their local en-
vironment and that data can be used to infer characteristics about
nearby people. As the number of deployed devices grows, it will
become increasingly difficult for people to know if they are being
observed by these devices. This problem is be particularly salient
as people become the occupants (perhaps temporarily) of a new
space such as a hotel, conference room, or rental unit. In that case,
the person may not be aware of all devices present in the envi-
ronment. In some cases, devices such as hidden cameras may be
purposely obscured to escape detection [7]. Conversely in smart
environments with dozens or hundreds of deployed devices, it may
become extremely difficult for an administrator to maintain the
location and status of every device in a space. Ideally a method
would exist to quickly and comprehensively locate all electronic
devices present in an environment. Building on prior research on
harmonic radar, this paper takes another step forward to such a
solution.

Previous research has shown that harmonic radar systems can
detect the presence of electronic devices without the need for device
to cooperate with the discovery process, without knowledge of
the device’s communication protocols (e.g., Wi-Fi or Bluetooth),
and works even if the devices are powered off [12]. It works by
transmitting a radio frequency (RF) and monitoring for a response
at the first harmonic. Electronic devices comprised of components
with nonlinear metal junctions such as transistors and diodes will
re-radiate the RF at the first harmonic (two times the transmitted

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WiSec, May 2024, Seoul, Korea
© 2024 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

frequency), but other items that do not contain these electronic
components will not (discussed in more detail in Section 2). Other
research has found that devices can be identified based on their
harmonic response [13], but that work focused on the physical
properties of nonlinear electronic components. In this paper we
show that harmonic radar is also able to detect the presence of
batteries.

In addition to the security and privacy risks raised by the pres-
ence of IoT devices ubiquitously and unobtrusively collecting data,
battery cells are a fire hazard in environments such as checked bags
in airplanes [5] as well as e-waste recycling plants [10]. Moreover,
separating batteries from electronic waste is critical for the correct
extraction of precious metals from discarded electronics [15]. Ex-
isting methods for detecting batteries in cluttered environments
rely on expensive X-ray machines and computationally intense
machine-learning techniques [18]. The ability to detect batteries
with less expensive equipment and in a more efficient manner be-
comes increasingly important with the widespread propagation of
battery powered IoT devices [14].

In this paper, we make two important contributions:
• A theoretical discussion about why a harmonic radar should

detect batteries
• Laboratory experiments that confirm a harmonic radar does

detect batteries.
Our work is, to the best of our knowledge, the first to show that

harmonic radars are able to detect the presence of batteries.

2 BACKGROUND: HARMONIC RADAR
Radars are remote detection systems comprised of a transmitter
(TX) which propagates an RF wave at a chosen frequency (𝑓0) and
phase (𝜙) as well as a receiver (RX) that is commonly co-located
with the transmitter and measures the electromagnetic spectrum at
the transmitter’s chosen frequency. The RF signal travels through
the air from the transmitter and strikes objects present in the envi-
ronment. A portion of the transmitted energy then reflects off from
each object in the radar’s line of sight and returns to the receiver.
The presence of a signal detected by the receiver at the transmitted
frequency indicates a reflection, and therefore, the presence of a
object, sometimes called a target, in the operating area of the radar.
This situation is known as a linear response, as the return signal is
at the same frequency as the transmitted signal (perhaps altered
slightly by the Doppler shift for moving targets).

2.1 Detecting electronic devices
A major challenge in using a radar-like system to detect electronic
devices in a cluttered environment such as a home or office is that
the vast majority of objects in a typical environment generate a
linear response. These linear responses arrive superimposed at the
receiver. At best, using radar for electronic device detection and
identification requires heavy use of signal-processing techniques to
declutter the return signal. In practice, even with strong algorithms

1
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it would be challenging to detect and identify the footprint of a small
electronic target device amid all the clutter. Moreover, traditional
radars detect targets by the reflection from their “enclosure” or outer
shell, making it difficult to detect items that might be intentionally
hidden (or lost and out of sight).

Harmonic radars work differently from linear radars. They lever-
age the nonlinear response generated from electronic devices by
setting the RX frequency to𝑛𝑓0, where𝑛 is a positive integer greater
than one and 𝑓0 is the transmitted frequency. The reflected power of
the harmonic has an inverse relationship with its associated integer
(lower values of 𝑛 provide higher received power, higher values of
𝑛 provide lower received power); hence, the work presented in this
paper (and other papers [8]) exclusively uses the first harmonic
where 𝑛 = 2 and the RX frequency is 2𝑓0.

Digital memory and computation, even for simple devices like
embedded systems, rely on semiconductors and other components
that reflect RF signals nonlinearly. Perez et al. showed that harmonic
radar systems are able to detect these devices [12] and to identify
them with high accuracy [13].

2.2 Detecting batteries
Harmonic radar can suffer from a problem: corrosion on targets can
lead to false detection. Specifically, metal oxides such as rust also
have a nonlinear RF behavior [4]. This “problem”, however, suggests
an avenue for remotely detecting batteries using a harmonic radar.
Commercially available battery cells contain metal oxides in the
cathodes [9, 16, 19]. We wondered if this battery composition and
its resulting nonlinear oxides would lead to detection by a harmonic
radar.

Exploring the research literature, we see the nonlinear behavior
of Lithium-Ion batteries was examined by Harting et al. [3]. In their
work, the authors estimate the “state-of-health” of the batteries by
applying a high-amplitude sinusoidal input signal through a wire
connected directly to the battery system. They measure changes
in the sinusoidal output voltage over time and estimate the loss
capacity fade due to loss of active material. Other research discusses
the nonlinear behavior of Lithium-Ion batteries in the context of
their electrochemical reactions during charge and discharge [3, 6].

The metal-oxide-metal junction created by corrosion can be
modeled by the equivalent circuit shown in Figure 1(a) [4]. The
junction between a battery cell’s cathode and the current collector
follow a similar structure, as depicted in Figure 1(b); hence, it is
reasonable to model a battery cell’s cathode-collector boundary
with the equivalent circuit in Figure 1(a), and expect harmonic
responses comparable to corroded metals.

Prior research, however, always connected the batteries over
a wire and has not explored the possibility of using a radar to
remotely detect the presence of batteries using RF. Prior work also
focused on Lithium-Ion batteries. We explored battery detection
using a harmonic radar to detect four different types of batteries:
Alkaline, NiMH, Li-ion, and Li-metal. With the exception of Li-
metal batteries, we found the harmonic radar was able to detect the
presence of batteries with 100% accuracy.

3 METHODS
In this section we describe our experimental setup and our test
batteries.

Figure 1: (a) Metal-Oxide-Metal (MOM) equivalent circuit.
Adapted from Ida et al. [4]. (b)MOM junction found in battery
cathodes.

Figure 2: Experiment setup.

3.1 Experimental setup
The design of our harmonic radar system is based on the setup
proposed by Perez et al. for detecting electronic devices [11]. A
minor, but important, difference is the addition of a reflection-less
filter, which attenuates more effectively the system’s generated
harmonics. We next describe our radar’s components.

3.2 Hardware
Figure 3 illustrates the block diagram of our experimental setup.
The system can be divided into two high-level blocks: transmitter
(TX) and receiver (RX). The TX block is comprised of a Signal-
Hound VSG60A capable of generating signals between 50 MHz and
6 GHz. A MiniCircuits SLP-2950+ low pass filter blocks harmonics
produced by the signal generator. A SBB5089+SZA2044 power am-
plifier module with a 40 dB gain increases the signal’s amplitude.
A MiniCircuits ZXLF-K312H+ low pass reflection-less filter and
a HP 8431A bandpass filter attenuate harmonics produced by the
power amplifier. The RX block is comprised of a TQP3M9037 LNA
for amplification of the received signal. A MiniCircuits VHF-3800+
high-pass filter and a HP 8435A band-pass filter attenuate any scat-
tering at the transmitted (fundamental) frequency. A SignalHound
BB60C spectrum analyzer collects the received signal. Each TX
and RX block includes a LP0965 Log Periodic directional antenna

2
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Figure 3: Block Diagram Harmonic Radar Architecture.

for wireless transmission, and a BNC cable is used to connect the
trigger channels of both blocks for synchronization.

In the spirit of using only off-the-shelf and relatively cheap
components, the system described here cannot fully eliminate the
harmonics generated by the TX amplifier, leading to unintentional
transmissions (mostly from the coupling of the TX and RX anten-
nas). To avoid the unintended emissions from masking the weaker
responses from actual nonlinear targets, we place an aluminum foil
screen between the antennas as shown in Figure 2.

3.3 Signal acquisition and processing
We use the terms “capture” or “measurements” to denote data ob-
tained in the following manner:

• Set TX carrier frequency to 𝑓0 and power level to -20 dBm.
• Set RX carrier frequency to 2𝑓0 andmaximum receive power

level to 0 dBm.
• Place target on a tripod in the radar’s line-of-sight.
• Set TX to emit a 0.6 ms Continuous Wave (CW) pulse, pull

the trigger channel “high" until transmission ends, and set
RX to capture twice as long (1.2 ms) to avoid missing the
pulse.

• Apply flat-top window to RX-captured IQ data and calculate
a Discrete Fourier Transform (DFT).

Additionally, we report the signal strengths for all harmonic
responses by averaging the power spectrum over 10 “captures”. We
selected the TX power level (-20 dBm) so any unintended harmonic
emissions were kept below the noise floor, as determined by the
reference signals (see Figure 6). We selected the length of the trans-
mitted pulse experimentally to minimize the acquisition time and
raw data size; a major problem with this optimization is that the
API to communicate with the spectrum analyzer did not allow us
extract information about the trigger directly (i.e., when the trigger
channel is pulled “high"). Triggers in the SignalHound BB60C are
stored in a memory region with a one-to-one correspondence to the
IQ buffer; trigger information is represented as binary states (one if
trigger channel is “high", zero if “low"). For every data transfer we
had to examine the trigger array to find the location of the transmit-
ted pulse in the IQ buffer. Transferring the whole IQ buffer (around
0.6 seconds/100 MB worth of data) guarantees the presence of a

Figure 4: Average RX power estimated with different DFT
window sizes. Target: iPhone 13 Pro Max.

trigger, but has the cost of examining large arrays of data for each
capture. Continuous transfers of smaller portions of the IQ buffer
result in faster trigger lookups but multiple transfers maybe needed
to find the location of the pulse. To make the system efficient it was
necessary to craft a pulse large enough that only a few “mid-size”
reads are required to find the trigger, but small enough that the
memory occupied is not a constraint.

In data processing, the DFT window is the most important de-
sign parameter. Harmonic radar detection is heavily dependent
on changes of received power, so we applied a flat-top window,
known to produce more accurate amplitude estimates [17], before
computing the transform with the FFT algorithm. Although the re-
ceived peak power is not dependent on the pulse length, the power
estimated from the DFT is affected by the DFT window length. Us-
ing measurements taken on a very responsive nonlinear target (an
iPhone 13 Pro Max), we tested different window sizes. As shown in
Figure 4, the power estimate plateaus at a 4000-point window; thus,
we chose the closest power of two1 (i.e., 4096 points) for the DFT
window size. For peak detection, we simply chose the maximum
value in a bin. This method was simple, fast, and accurate. This
simple method may result in an incorrect frequency bin selection
(i.e., the maximum peak may not always be at the same bin); since
the frequency is known beforehand, it is only necessary to look
at the neighboring bins within the spectrum analyzer and signal
generator errors. Our spectrum analyzer and signal generator both
have a reported error2 of 2.0 ppm, which results in around 7 KHz
of uncertainty from the set frequencies: 2.3 GHz (TX) and 4.6 GHz
(RX). In the worst-case scenario, with maximum uncertainty in
both generator and analyzer, there can be 14 KHz uncertainty in
the DFT center frequency; with the selected DFT size (4096), the
frequency resolution is 9.8 KHz;3 hence, we only need to look at
three bins to find the maximum peak, that of the center frequency
(bin 0) as well as the two closest neighbors (bin -1 and bin 1).

1The FFT algorithm takes advantage of symmetries that result from windows whose
size is a power of 2.
21.0 ppm/year with around 2 years of use.
3We conducted all experiments at 40 MHz, the maximum acquisition rate of our
hardware.
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Figure 5: Batteries tested: (a) Samsung Nexus S Li-Ion, (b)
Li-Ion 1865, (c) NiMH AA, (d) Alkaline AA, (e) CR20233 coin
cell, (f) NiMH AAA, (g) Alkaline AAA.

3.4 Targets tested
We tested both battery and non-battery targets. We tested the non-
battery targets to ensure that the harmonic radar was not uninten-
tionally detecting a linear response.

Non-battery targets. To differentiate batteries from other objects,
we used three non-battery target configurations: a background
response with no objects present, a cardboard box representing
a non-reflective object, and an aluminum foil coated box repre-
senting a highly reflective object. This test served to quantify the
environmental and system generated noise without a target device.
Because these reference items do not contain nonlinear junctions,
we expected them to display no nonlinear response. In Section 4 we
see that is indeed the case, confirming the harmonic radar system
works as anticipated.

Battery targets. We tested four battery types commonly found
in consumer electronics shown in Figure 5: alkaline, nickel-metal
hydride (NiMH), Lithium-ion (Li-Ion), and Lithium-metal.

3.5 Experiments
We placed each target item in the radar’s line-of-sight at a fixed
distance of 35 cm from both TX and RX antennas. We took ten mea-
surements with 𝑓0=2.3 GHz. Perez et al. showed that the harmonic
response of consumer electronics is maximal in the region around
2.4 GHz due to the operational frequency range of the target de-
vices [12]. We follow this approach, but selected 𝑓0=2.3 GHz in our
experiments to avoid any potential Wi-Fi or Bluetooth interference.

Existing device detection mechanisms based on harmonic radar
technology are dependent on differences between the background
environment (e.g., no target device present) and the signal received
from a target device [1, 2, 12]. In this work we defined ‘detection’
to mean that observed response was at least 3 dB higher (i.e., dou-
ble the power) than the background environment. This threshold
represents the worst-case detection scenario.

Additionally, we tested a range of values for 𝑓0, from 2.0 GHz
to 2.8 GHz in 5 MHz increments, to see whether the choice was

significant.4 This experiment led to a total of 160 signal-strength
values across the range, each obtained by averaging 10 repetitions.

4 RESULTS
In this section we discuss the results of our experiments. We found
that the harmonic radar did not falsely detect the non-battery tar-
gets, and successfully detected each battery type except for the tiny
CR20233 coin-cell battery.

4.1 Non-battery targets
Figure 6 summarizes the measured average RX power for the ref-
erence signals discussed in Section 3.4 when 𝑓0 is set to 2.3 GHz.
The noise floor of the system is estimated to be -87.6 ± 1.7 dBm
as shown by the background capture in Figure 6a. Additionally,
the cardboard and aluminum responses, Figure 6b and Figure 6c
respectively, serve as a reliability indicator for the chosen frequency
and power settings as well as the correct operation of the radar
overall. One of the major sources of error for harmonic radars is
the reflection of “leaked” energy at 2𝑓0 generated by the nonlinear
components in the circuit. The fact that both references are within
the expected deviation from the average background (e.g., they did
not have a harmonic response) confirmed the harmonic radar was
working as intended.

4.2 Battery targets at a fixed frequency
Figure 7 shows that the harmonic radar easily detected the batteries
in our testbed using the 3 dBm threshold, except for the CR2032
coin cell. We speculate this result was likely due to the battery’s
small size and lower amount of electrochemical content. The results
are summarized in Table 1. We notice the larger the battery (e.g.,
AA vs. AAA), the higher the average response. For example, the
NiMH AA battery had an average response of -80.0 dBm, but the
AAA form factor only had an average response of -82.1 dBm. Recall
that due to decibel’s nonlinear scale, 3 dBm is a half power point,
suggesting the difference of 2.1 dBm may be significant. We intend
to examine this characteristic in future work.

Table 1: Battery types and harmonic response. Each battery
is easily over the 3 dBm threshold, except for CR2032 coin
cell batteries.

Battery Type Response (dBm) Difference
Background -87.6 0.0
NiMH AAA -82.1 5.5
Alkaline AAA -80.2 7.4
CR20233 -86.1 1.5
NiMH AA -80.0 7.6
Alkaline AA -78.2 9.4
Li-Ion 18650 -76.6 11.0
Nexus S Li-Ion -80.6 7.0

4Our specific hardware limited our 𝑓0 to the range [2.1GHz, 2.7GHz] using a 200 MHz
buffer (100 MHz before and 100 MHZ after).
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(a) Background Measurement (b) Cardboard Box Measurement (c) Aluminum Box Measurement

Figure 6: Harmonic response of reference signals. TX frequency set 2.3 GHz and RX frequency set to 4.6 GHz.

(a) NiMH AAA (b) Alkaline AAA (c) CR2032

(d) NiMH AA (e) Alkaline AA (f) Li-Ion 18650

(g) Samsung Li-Ion for Nexus S.

Figure 7: Harmonic response of standalone battery cells. TX frequency set 2.3 GHz and RX frequency set to 4.6 GHz.

4.3 Exploring options for 𝑓0
Figure 8 depicts the results of our experiments with a range of 𝑓0
values, for three batteries (Alkaline AA, NiMH AA, Li-Ion 18650).
The batteries we studied, including those not shown in Figure 8, do

not show much difference in response across the tested frequen-
cies. Small differences in power can be observed throughout the
spectrum; such differences, however, cannot be used to distinguish
battery types and form factors since they can be easily counter-
acted by changing the relative distance between battery cells and
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Figure 8: Frequency response for 𝑓0 ranging from 2.0-2.8 GHz,
for three batteries: NiMH AA, Alkaline AA, Li-Ion 186650.
Note that the radar’s operational region is between 2.0 GHz
and 2.8 GHz.

the radar’s antennas. Moreover, the selection of frequency 𝑓0, at
least in the range of our hardware, made little difference in detecting
the presence of our test batteries.

5 DISCUSSION & LIMITATIONS
The results presented in this paper demonstrate that existing har-
monic radar systems are capable of detecting the presence of battery
cells. This may become handy in situations where batteries, on their
own, represent a security threat – such as checked bags containing
Li-Ion batteries in airplanes, or situations where batteries might
need to be detected amid other “linear clutter” such as in recycling
plants. Nevertheless, the system presented in this work suffers from
limitations that we intend to explore further, as follows.

Frequency selection: we explored a range of frequencies 𝑓0 as
determined by the capabilities of our harmonic radar hardware. Al-
though these frequencies seem suitable for the detection of consumer-
grade electronics, it may be worth exploring a wider range.

Maximum detection range: Previous work shows that harmonic-
radar systems are effective at distances up to 2 meters for consumer
electronics [11]. Because the harmonic responses of batteries pre-
sented in this study followed similar power traces, we expect battery
detection to have a similar range limitation.

Combined device and battery systems: Nonlinear junctions found
in the chips of electronic devices (i.e., transistors) are known to
have a measurable harmonic response [1, 2, 11]. Although our re-
sults show that batteries, by themselves, also produce a measurable
harmonic response, we have not tested the ability of the system to
detect batteries while installed in electronics. The presence of non-
linear components in electronics may mask the battery’s harmonic
response.

6 CONCLUSION
In this paper, we characterize the nonlinear behavior of battery cells
by drawing parallels between their physical structure to that of
rust in metal, which is known to have nonlinear behavior. We also
show that their presence can be detected using existing harmonic

radars designed for the detection of electronic devices. We studied
the harmonic response of four commercially available battery types
(Alkaline, NiMH, Li-Ion, Li-metal) under semi-controlled conditions.
Our findings shed light on the unexplored area of wireless battery
detection, and prompt future investigations on more efficient ways
to detect batteries using this technology.
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