SUGGESTED SOLUTIONS (ODD)

CHAPTER 7

NOTE: Use three-digit precision for all calculations unless otherwise stated or implied.

7-1. Work Function. Is the energy of a 4 =1.2um photon sufficient to generate a
photoelectron from a material having a work function — or band gap energy (between valance
and conduction bands) — of ¢ =1.2eV?
SUGGESTED SOLUTION: The energy of a A =1.2 um photon is approximately
E _ E _ 1.24

PHOTON 2 /1(,um)
Since Ep 1oy <@, this photon does not have sufficient energy to promote an electron across the
band gap between the valance and conduction bands. So the short answer is “NO.”

~1.03eV

7-3. Photodetector Output. A photodetector receives E =1.09x10°W/m* of A =2.67um light
on its surface from an external source. Its area is A, =100x100pum , its quantum efficiency is

n=0.35, and its integration time is At,, =0.10s. What is the number of electrons, N , output
by this detector in one sample?
SUGGESTED SOLUTION: Phenomenologically in words ~

Electrons  Power Energy Electrons Time
= x Area + X

Sample  Area " Photon  Photon ) Sample
which translates into symbols ~
N =Ex A, x%xnxA'{,NT :%
A

and then into numbers ~

 (1.09x10° W/m?)(10m)’(2.67x10°m)(0.35)(0.105)
N = ~ 5120 electrons
(6.63x10’34J -s)(3><108m/s)

7-5. Digitized Output. If the detector in Problem 7-3 is designed to saturate for a source that is
20 times brighter than the source detected in that problem, and its output is digitized to 12 bits,

what is its digitized output when it sees a source giving an irradiance of E=5.7x10"°W/m? on
its surface?

SUGGESTED SOLUTION: See the suggested solution for Problem 7-7.



7-7. More Digitized Output. If the detector in Problem 7-3 is designed to saturate for a source
that is 20 times brighter than the source detected in that problem, and its output is digitized to 12
bits, what is the irradiance on its surface if its output is 1945 Digital Units (DU)?

SUGGESTED SOLUTION (for Problems 7-5 and 7-7): For both problems, we calculate that
the “saturation” input to our photodetector isE,,; =20x1.09x10° W/m’ ~ 2.18x10°° W/m”.
Using the same proportionality (or the phenomenological equation we developed for Problem
7-3), the saturated output is then N, = 20x5120 electrons =102, 400 electrons (e7) . This, we

are told, would be scaled to 2" = 4096 divisions, or bins, on a new scale (0 through 4095
inclusive) which can be represented by a 12-bit binary number. (The divisions are called digital
units (DU) which are visually shown as shades of gray.) Accordingly, each bin (i.c., “bit”)
represents an output of 102,400 e” + 4096 bits ~ 25 e’/bit. Hence, for example, our digitized
detector output for Problem 7-3 is 5120 + 25 = 204.8 bits = 205™ bin = 204 DU (because the
first bin is number zero).! To convert this to binary, we note that 204 = 128 + 64 + 8 + 4 = 2" +
2°+ 23+ 2% Using 1’s and 0’s, this number? is 000011001100 in binary. These results are
shown in the table below.

For Problem 7-5, we find, proportionately, that the given input represents

6 2 _
57010 WM 145 400 ¢ ~ 26,780 ¢, which is 2o/ 208
2.18x10”° W/m 25e7/bit

1071 DU . These results are also shown in the table, together with the binary representation of
1071=1024+32+8+4+2+1=20+2°+ 22+ 22+ 21 + 2°,

For Problem 7-7, the meaning of the given 1945 DU is that we have electrons filling at
least 1945 bins (1945 x 25 = 48,625 €°), but possibly with some electrons in the 1946™ bin
(48,650 ). [COMMENT: at the level of precision we are used to dealing with — three
significant digits usually, although we slip in a fourth once in a while when it’s convenient — it
turns out that we don’t have to worry about one or two DUs here and there; we can probably
tolerate a 100 electron (4 DU) ambiguity.] Again using proportionality, we calculate that the
input to the photodetector that gave us this output was ~

48,625¢"
102,400 e

=1071.2 = 1072 bits =

x 2.18x107° W/m* ~1.04x10™° W/m?

This result is shown in the third line of the following table. The table summarizes our
calculations for three problems, with givens shown in blue and results in red.

! Note there is a “quantum ambiguity.” Any number of electrons between 5101 and 5125 would give us the same
bin number, or DU. Thus we cannot go backwards with certainty from DU to number of electrons (Problem 7-7).

% There are only 10 kinds of people: those who can read binary and those who can’t.



Irradiance on Photodetector Photodetector | Photodetector
photodetector output output output
(W/m?) (electrons) (DU) (binary)
Problem 7-3 1.09x10™° 5120 204 000011001100
Problem 7-5 5.70x10 26,780 1071 010000101111
Problem 7-7 1.04x107° 48,625 to 48,650 1945 011110011001
“Saturation” 2.18x 10 102,400 4095 111111111111
(Not to scale) e 0.9-
e 0.1
R 20 L 35

7-9. Calculating Detector Output. In a laboratory, radiation from a one-inch square, T =350 K
diffuse blackbody source is collected by a D, = 4" diameter /5 lens R = 2.0 m away and is
focused on a Hg:Cd:Te photodetector with the quantum efficiency shown above. The detector
has a Dp = 1" diameter photosensitive surface. The detector is operated at fp = 10 Hz with a

DC =99% duty cycle. What is the output of the detector in electrons per integration time, N ?

SUGGESTED SOLUTION: Let’s look at a phenomenological solution:
First, the source is a Lambertian blackbody, emitting radiation B, (A, T) [W/(m?um)]

S : . . B
which is its spectral exitance. The spectral radiance is therefore L, =—% [W/(m?sr um)]. From
T

the lens, the source subtends a solid angle Q ~ XY

2 [sr] where X and Y are the linear dimensions

of the source (X =Y =1 inch =0.0254 m). Since the source dimensions are small compared to R
(2 m), we can approximate the spectral irradiance on the lens from the source as

B, XY XYB
B L= TR

[W/(m?um)]. The spectral power passing through the lens, and

XYB, #zD? XY DB

imaged onto the detector’s surface is thus @, =E, A, = — il >
T R 4 4R
where D, is the lens diameter (D, =4in=0.1016 m). Note that we are assuming both the

atmospheric and optical transmission functions (tatm and topr) to be unity. Note also — and this
is really important — that we have carried the “per unit bandpass” or “per micron” along with us
through the calculation so far. This is because we haven’t applied a bandpass yet.

~ [Wipm]




f
Dropping back a moment, note that the aperture stop ( f/#= Dif , Where fes is the focal
L

length and D, is the aperture diameter) implies that the focal length of the collecting lens is
f =(f/#)xD_=5x1.1016 m=0.508 m. Using the image finder’s formula, di + di = fi :
(0] | eff
where do is the object distance (R in our case) and d, is the image distance, we calculate the
dofer  2mx0.508m

d,—f, 2m-0.508m

= —0'281 =0.340, and hence the size of the image of the blackbody

image distance to be d, = =0.681m. We then have that the image

magpnification is [M|= g—'

O
source on our photodetector is approximately 2.54 cm x 0.340 = 0.865 cm on a side. This is
sufficiently small that we can assume that all of the photons we will calculate next will fall on
the detector’s surface and be converted into electrons through its quantum efficiency.

Now, the energy per photon (wavelength in meters) arriving at the detector is E = % [J]

XY D?B,
O, 4R?

so the spectral number of photons per second on the detector is P, = E‘ = e
%
_XYDiiB

= W [photons/(s-um)] (note that the dot over the P is Newton’s “per unit time”).
C

Since the integration time is At,, = DC><fi [s] where DC is the “duty cycle” (DC = 99% =
D

0.99) and f, is the operating frequency ( f, = 10 Hz), the number of photons arriving at our
XY D?*DC 1B
4hc f, R?

have a spectral quantity, and photons of different wavelengths get converted into electrons by
the detector’s quantum efficiency, which we will discuss next.

detector per integration time is P, = P,At,; = £ [photons/um]. Note that we still

Between the wavelengths of 2.0 and 3.5 micrometers, our HG:Cd:Te photodetector has a
quantum efficiency that increases linearly (7 =mA+b) according to a relation that we can

08, 14

derive® from the chart: 7 = EA _145 [electrons/photon] where the first constant (slope) has

1.5
units of electrons/(photon-um) and the second constant (intercept) has units of electrons/photon.
Evidently the number of electrons generated in one integration time is then the product:

% You can read the slope off the chart directly: Ay=A7=0.9-0.1=0.8,and Ax=AA=3.5-2.0=1.5; thus

m :ﬂ :M :%. Finding the intercept, b, requires plugging in a known point on the line and solving. For
AX AL 15
0.8

example, when (4, 1) = (2.0, 0.1) we have g.1=2° 2.0+b, and solving gives us p = ()_1_% __ 145
15

15 15



—
N, =Py = XY DLDC/lzBA(%/1

4hc fy R 15
notice two peculiar things about this expression. FIRST, the first A in the formula is in units of
meters — having come from our calculation of photon energy — while the second A is in units of
microns — from the quantum efficiency relation. We will fix this below. SECOND, we still have
a spectral quantity. To derive our final answer, we have to integrate this over the sensor’s
bandpass: N = J' N,dA

BANDPASS

1;?) [electrons/um]. Now if you are sharp-eyed, you will

Apparently, we will have to be extra careful of the units in our calculation of the integral.

We note that the Planck formula, B, = 4 , calls for wavelength in units of
“[oo(%r )1

micrometers when we use the values ¢; = 3.742x108 [W-um*/m?] and c, = 1.438x10* [um-K] for
the so-called “first and second radiation constants” as given in our text. It only makes sense,
therefore, that we should be consistent and use micrometers for all instances of wavelength in
our calculation. When we do this, let’s see what happens.

Putting everything together, we see that we want to integrate:
M
4hc fy R
BANDPASS
y—
_XYDIDC (5 (masb)ds
4 h c fD R BANDPASS
Since we want to do the integral over wavelength in units of microns, a check on the units**

[Ji?inj[m] J[ {m um} m]{%}

shows that we have some dimensions left over — remember our final answer is just supposed to
be in “electrons” (per integration period) which is just a number with no units. Thus to make

0°m

lpum
place, the coefficient of fixed quantities out in front of the integral evaluates to

X Y DIDC K _ (0.0254m)(0.0254 m)(0.1016 m)*(0.99)(10 °m/jum) 2 07 x 10" m?

4hc f, R? (4)(6.626x107**J-5)(2.998 x10°m/s)(1L0Hz)(2m)? W -um

N = A B, (mA+b)da

things work out right, we have to stick in a conversion factor, K = . With this factor in

(assuming three significant digits throughout), and the integral apparently has units of w

* The notation has shown here only sticks in the units for those terms in the formula that have them.

® Remember that the “dA” also has units of micrometers!



The integral is done numerically in the companion spreadsheet where we have used simple
trapezoidal integration to derive its value 5.22. So, finally, we have our estimate that ~

2
[2.07 xlollwm—J(S.ZZ w “mj =1.08x10"electrons

2
-pum m

are generated (per integration time).

7-11. An Experimental Photodetector Test.
The laboratory set-up in the previous problems
(7-9 and 7-10) is modified to include a “chopper
wheel” in front of the blackbody source. The
wheel is eight inches in diameter, has two 45°
wide openings, and spins in front of the
blackbody — alternately covering and exposing it
to the photodetector. First calculate the SOURCE SOURCE
photodetector’s output when the blackbody is HIDDEM REYVEALED
hidden and then when it is revealed. Determine
the maximum output of the detector when the wheel spins at rates of 2, 5, 10, and 20 Hz (i.e.,
revolutions per second). (Recall that the detector integrates at 10 Hz with a 99% duty cycle.)

SUGGESTED SOLUTION: First, we are going to modify our calculations from Problems 7-9
and 7-10 to compute the rate at which our photodetector is converting incident photons into
output electrons. You will understand why later.

From Problem 7-9, our photodetector’s output when seeing only the blackbody is ~

. XY D? XY DK T
BB = J‘T(:Rz/l B/l (ml-'-b) d/’l:T(:RZ J.ﬂ BA (m/1+b)d/1

2.0pum
BANDPASS

2
= {2.095><1012 m—J(s.zz Wom

j ~1.09x10%s™
W-s-um m

And from Problem 7-10, our photodetector’s output when seeing the background® surrounding
the blackbody is ~

2 2 2 2 3.5um
Ny = J[ 7 —XZJ b ABA(mZ+b)d/1:( X —XZJD % [ 2B, (ma+b)dz
4dZ,  R® Jahc 4d2,. R | anc

BANDPASS

2.0um

2
- [1.21><1013 m—J[O.GSG w “mj ~7.69x10%2s!

W-s-pum m’

Combining these results, we have that our photodetector’s output when seeing the blackbody
source surrounded by its background is 1.86x10™ electrons per second.

® We are assuming the chopper wheel is at 300 K, the same temperature as the background in Problem 7-10, so when
the photodetector sees partly laboratory space and partly chopper wheel surface, it is all the same.



Second, we are going to add to these results a third calculation for our photodetector’s
output when the blackbody source is concealed by the chopper wheel. We will assume then that
it sees only a 300 K background (chopper wheel plus whatever other apparatus may be behind

it). The only difference from the previous problems is the solid angle filled with extended
2

: : X . . . :

radiant background is now Qg = 7;_2 Using this FOV, the student can easily verify that our
IMG

photodetector’s output at these times is ~

22 3.5um
- XD K 4B, (mi-b)d2

- 16 h Cd|2MG 2.0pm
2
- (1.42><1013 m—j(o.asew—‘;‘mj ~0.903x10"s™
W-s-um m

Third, we will address the issue of the chopper wheel. The sketch below shows the
progression of one its slots across the blackbody through half a revolution. As you see, the
photodetector sees at least some of the blackbody for (143° — 82°)/180° ~ 33.9% of the time
while it is fully uncovered for only about (127° — 98°)/180° =~ 16.1% of a rotation. The transition
from covered to uncovered is, technically, a convolution of the two shapes (slot in wheel and
blackbody surface) passing over one another, but we will just approximate it with a linear rise
and fall.

- rain e
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 —
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Since our photodetector’s output is known when it is seeing the blackbody — and not — we
can plot its output (electrons per second) as a function of time when the chopper wheel is
rotating at speeds of 2, 5, 10, and 20 Hz, thusly ~
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BUT WAIT, there’s more because the photodetector integrates its input ...
With our photodetector operating in an integrating-sampling mode, its output is ~

N = I N(t)dt [electrons]

which is usually interpreted as being the area under the curve. For the remainder of this
problem, let us assume that the rotation of the chopper wheel is synched to the integration cycle
of our photodetector, such that angle zero in the figure above corresponds to the beginning of an
integration interval. (This need not necessarily be so, and it is a very important issue which
should be explored in the interpretation of data from non-literal OPIR sensors in Chapters 13 and
14.) Furthermore, with a duty cycle of 99%, we will ignore the readout time.

For the chopper wheel rotating at 2 Hz, the output of our photodetector (in electrons per
integration time) is as shown below. Because of our simplifying assumptions, the calculation of
the temporal integral is just reduced to the areas of rectangles and trapezoids. If we let the
photodetector’s output be reported at the end of each of its samples, and fancifully “connect the
dots,” we see that its output only mildly resembles the input. Is this sufficient for us to be able to
detect the presence of the blackbody in the photodetector’s FOV? This is a matter for advanced
study in signal processing, but we could imagine that — presented with these data — we could
probably say that there is something there besides background, but, obviously, we are unable to
identify it. We have nibbled at the edge of non-literal signature identification.
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When the rotation speed on the chopper wheel increases, the situation becomes as shown
in the next figure. The photodetector’s temporal integration is no longer able to discern that
there is any target present in its FOV at all! Again, we have stepped into an area where we need
to rethink how we want to collect and process these data.
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