CHAPTER 14 ~ SUGGESTED SOLUTIONS (ODD)

14-1. Bad Pixel Correction The portion of a sensor’s FPA shown below shows the raw counts
(12-bit) for one frame of data, and contains output from a bright target against a dark (nighttime)
background, noise, and other artifacts. There are two bad pixels noted: H3 and F6. Apply a
median filter to correct these inappropriate values.

A B C D E F G H I J
1 104 95 103 | 106 97 98 104 | 100 91 107
2 106 | 109 99 108 | 111 | 121 | 104 96 91 101
3 105 96 115 | 261 | 610 | 703 | 439 0 101 | 107
4 100 90 229 | 927 | 1908 | 2170 | 1450 | 504 | 123 93
5 105 94 401 | 1616 | 3113 | 3533 | 2419 | 904 | 161 97
6 91 105 | 398 | 1563 | 3033 | 4095 | 2356 | 869 | 163 | 109
7 105 99 207 | 847 | 1757 | 2017 | 1324 | 443 | 118 91
8 94 93 112 | 222 | 506 | 605 | 378 | 130 90 97
9 97 109 | 109 93 120 | 123 98 104 91 104
10 101 | 100 98 96 107 93 107 92 109 98

SUGGESTED SOLUTION: The median filter picks out the middle value of a list arranged in
numerical order. Computer programming-wise, it is said to be faster to use integer arithmetic, so
we want an odd number of values to sort. This is easily accomplished by selecting the bad pixel,
itself, and its eight nearest neighbors. (The wisdom of including the bad pixels is often
questioned, but see the following remarks.) For cells H3 (apparently a dead pixel) and F6 (a
“happy” pixel), respectively ~

H3 E6
0 1324
91 1757
96 2017
101 2356
104 2419
123 3033
439 3113
504 3533
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Thus we see that appropriate values to replace the two bad pixels are 104 and 2419
counts, respectively. Are these values the right ones? Don’t know! But we can confidently say
that they are closer to being correct than the bad values. We could say the same thing about any
method we might use to replace the inappropriate values; it’s just that the median filter method is
simple to understand, easy to program, and reasonably fast.

14-3. Estimating Target Energy. The point target collected in Problem 14-1, and corrected in
Problem 14-2 for dark current, was most likely a “superbolt” lightening flash lasting about 0.5 s.
The data frame was thus only one of several. The advanced metsat sensor, in geosynchronous
orbit, watched the event through 30 cm diameter optics in the 2.1 — 2.3 um window band. The
sensor’s optical throughput was roughly 50% to a CMOS FPA with a 40% efficiency; the
quantum wells per pixel were designed to be about 80,000 electrons deep. From this
information, estimate the lightening bolt’s radiant energy output (in band).

SUGGESTED SOLUTION: This calls for our dusting off the end-to-end equation from Chapter
10 and applying one new wrinkle, namely summing the counts on all the pixels that represent
energy from the target:
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This equation we approximate in the usual way ~
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Since we are interested in comparing energy collected to the energy of a known source, examine
the quantity <IA>A2 At,; , and apply the definitions of power and what we mean by a spectral
radiometric quantity:
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That is, our approximate solution reduces to ~
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Now for a little hand-waving. We believe that a CMOS FPA essentially uses 100% of its
surface area for capturing photons, so F ~1 for all pixels. BUT, we will also suppose the
sensor’s optics are nearly diffraction limited, resulting in only 84% of the target’s image energy
being within the pixels we have found. Thus our sensor equation can be solved as ~
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This is for the one frame of collected data, of course, and is only for the bandpass of the sensor.
(Another little piece of hand-waving is the last term ~ it can be either the conversion of each
pixel’s digital output to electrons and then sum, or the other way around: sum, then convert.)
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To start filling in the numbers, let’s
suppose that the distance from sensor to target

is on the order of 40,000 km — something "] /\
greater than geosynchronous altitude above the  § 5,4/ A

equator, but less than looking at the North Pole. & | V

The atmospheric transmission in the 2.1 — 2.3 E 0904 -

um band is good, and averages to about 0.92
(see plot at right). The collecting aperture is
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For the sum of the counts on the pixels, we refer back to Problem 14-2 where we
removed dark current from the collection (no background was assumed to be present in the
nighttime scene). We found 40 or 41 pixels with what we believed to be target energy after also
accounting for random noise. There is still the matter of the two pesky bad pixels, but applying
the same method as Problem 14-1, we replace them with estimates using the median filter, as
shown here, noting the “dead” pixel has no apparent target energy on it ~

A B C E D F G H | J

1 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 19 0 0 0 0
3 0 0 0 166 | 502 | 598 | 347 0 0 0
4 0 0 | 135 | 825 | 1816 | 2068 | 1360 | 398 | 29 0
5 0 0 | 304 | 1525 | 3018 | 3436 | 2325 | 808 | 58 0
6 0 0 | 292 | 1468 | 2937 | 2325 | 2248 | 761 | 61 0
7 0 0 | 113 | 744 | 1665 | 1915 | 1225 | 353 | O 0
8 0 0 20 | 113 | 412 | 503 | 272 | 40 0 0
9 0 0 0 0 18 23 0 0 0 0
10 © 0 0 0 0 0 0 0 0 0

The sum of counts on target pixels is therefore Z N, ~37,245. We recall from the previous
PIXELS

problem, however, that the noise component of each pixel — after subtraction of the dark frame —
is about + 8.5 counts per pixel, up to at most + 15 counts. This being the case, when we add
together the outputs of 40 pixels, we expect that our summed result may have an error (noise) of
approximately

... ~+40-8.5~ +54 counts,

Furthermore, since the output of the focal plane is reported to 12-bit depth (2% = 4096),
evident from the “happy” pixel, and the pixel well depth is given to be 80,000 electrons, the
80,000

, but with a “quantization
4096

“digital-to-analog” reverse conversion is therefore % -



error” of approximately 19 or 20 electrons (one bit) per pixel. Assuming a random distribution
of counts in individual pixels (i.e., number of electrons high or low in the top-most bin), taken
together the total of the summed pixel output may have an expected quantization error of

AN = +440-19.5 ~ +123 electrons ~ +6 counts.
Thus we see that the uncertainty in our Pixel Sum is dominated by the focal plane noise more

than the quantization error, although it amounts to only about ~ 0.15% because we have

a very strong target signal in this Problem. (We comment here that the uncertainty introduced by
fixing the bad pixels may, in fact, be the largest source of error, although we have no way of
knowing that.)

To complete the calculation , we now plug in the numbers:

<AETGT > ~

(47)(6.63x10*J-5)(3x10°m s *)(4x10"m)’ {80,000

(0.84)(0.92)(0.071m?)(0.5)(0.4)(2.2x10°m) . 4096 }{37’245} ~1.2x10°].

14-5. Principal Component Analysis® Spreadsheet file Chapter 14 ~ Suggested Problems
DATA gives ten seconds of data collected on two pixels, called xi and yi, looking at a constant
background. (iisan index.) The variation in the data is probably due to sensor jitter and some
noise. Apply Principal Components Analysis to find the nominal background.

SUGGESTED SOLUTION: The computational method for calculating Principal Components
(PCs) is not given in the text, so the following is a step-by-step procedure for two-dimensional
data. Since this is a two-dimensional problem, we will find two PCs. The student will find
computerized techniques for handling greater dimensional data in other books on multivariate
statistics, as well as numerous web sites.

1. Find the average, or mean, of variables (pixel values) xi and yi. Call them Xand Y (at
the bottoms of their respective columns on the Suggested Solutions (ODD)
worksheet).

2. Calculate the variance (difference) between each xi and X, and between each yi and Y.
(See Columns E and F on the worksheet.)

3. Calculate the squares of the variances, (xi — X)? and (yi — Y)?, and also the covariance
(xi —X)(yi—Y). (See Columns H, I, and J on the worksheet.)

4. Find the sums of (xi — X)?, (yi — Y)?, and (xi — X)(yi — Y) (at the bottoms of their
respective columns).

5. Note that this data set has n = 101 entries (for times t = 0.0(0.1)10.0), so divide the
three sums by n—1 =100 (below the sums).

! Unfortunately the calculation of principal components for an n x n focal plane — or section thereof — is too
difficult a computational problem to assign as homework. This problem considers only a two pixel array to
demonstrate the method. The student is encouraged to dig into any modern book on multivariate statistics to learn
the full implementation and to explore the computer algorithms necessary to make it tractable.



We have now found the covariance coefficients among the variables: x with itself, y with
itself, and x with y. (Note that the covariance of X with y, cy, is the same as the covariance of y
with X, ¢, because the multiplication is commutative.) Assuming the student is familiar with
matrix, or linear, algebra, these may be expressed in a covariance matrix ~

oo [cxx cxyj ~ (32.574 32.365j
c, C, 32.365 34.013
6. Find the characteristic values (eigenvalues) of the covariance matrix; that is, find

X
values of 4 such that CX = AX, where X is a general two-pixel vector X = [y) :
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To solve this equation with anything other than the trivial solution x =y =0, the
coefficient matrix must be “singular”. That is, its determinant (called the
“characteristic equation”) must be equal to zero:

C, —A C,,
det( . . iﬂj = (Cyy —)L)(cyy —}t)—cxycyx

X

XXy T Vxy Uy

=22 —(Cy ¢y, )A+(CuC, —C,y L,y ) =0.

Using the standard quadratic formula, the solutions (calculated in the worksheet)
are

(cw+Cy )+ \/(CXX -c,, )2 +4c,,C,,
A= 5 ~65.667 and 0.920 .

These characteristic values tell us the relative weights, or importance, of the PCs.
Obviously, one of the two components for this problem dominates the other; it is the principal
component of the data set, giving the most significant relationship between the data dimensions
(the two pixels).

7. Find the characteristic vectors (E for eigenvectors) for the characteristic values:
For A, =65.667:

32.574—65.667 32.365 x,) (-33.093x, +32.365y,) (0
32.365 34.013-65.667 )y, ) | 32.365x,-31.654y, ) (0)

These two equations are, in fact, the same (they are not linearly independent), so
there is no unique solution to them. The best we can do is

y _ 33093
32365




The choice of X, is thus arbitrary, and a reasonable choice is x; = 1. Itisalso
common to choose values such that w/xz +y® =1, i.e., itisaunit vector. Thus ~

X, 1 0.691
E = = or
y,) (1.022 0.707
Similarly for 4, ~0.920:

(32.574 —-0.902 32.365 j(XZ] B (31.672X2 + 32.365y2] B [Oj

32.365 34.013-0.902 )\ y, 32.365x, +33.111y, 0
v, = -31.672 «
2 32365 7
X, 1 0.715
E,= = or
Y, -0.979 —0.699 ).
Having found the characteristic vectors, we illustrate them at ® 1 R, A
right, plotted atop the data set. We clearly see that our original data set iz i
has the most variability along the E; direction (red), while there is very v !Sf >
little variation in the E; direction (green). Of course, we may have 0 7
surmised this already from the fact that A, = 71.44,. The impact of this 5 // N

is that our data set can be principally represented by reducing ittoonly ~ ° ~ =~~~
the one dimension. Since the other dimensional variation is small, X

leaving it out will not represent much loss of information.

8. Form the transformation matrix that will take you from the original data set to a new
one composed of the PCs. The transformation matrix is composed of the
characteristic vectors, arranged in order of importance in columns from left to
right:

If you want to retain all of the variability in the data, then for this two-
dimensional problem, the transformation matrix is
T,-(E, E)- 0.691 0.715
2 70707 -0.699

But if you want to reduce the data to one dimension, eliminating the second, the
transformation matrix is

0.691 0
T=(& 0)= 0.707 0

9. Take the transpose of the transformation matrix, which is an arrangement of the
characteristic vectors in horizontal rows instead of vertical columns:

— 0.691 0.707 nd T 0.691 0.707
0.715 -0.699 oo 0o /)

2



10. Finally, calculate your data set transformed into its PCs by [matrix] multiplying®

your transposed transformation matrix by the original data vectors (represented as
column vectors):

Xoe =TTX.

For example, if we want to retain all of the information and keep the data set two-
(15.138

X
dimensional, the first data point, X =| "'
) \14.013
%@ _ x?) (0.691 0.707 )(15.138) (20.368
¢ ly®) (0715 -0.699)\14.013) | 1.029
where the superscript “(2)” reminds us it is the two-PC transformed data point.

Continuing with the example, the first data point transformed into ONE PC,
which is the lion’s share of information, is

_(20.368

=l |

NO xV) (0.691 0.707)(15.138
o) Lo o Juom

Calculation of the two-dimensional and one-dimensional PCs for this problem’s data set

] , becomes

are in the worksheet, columns O and P, and column R, respectively. (Note also the values shown
in column S, which will be discussed below.)

15

104

Second Principal Component, vi(2)

-10

157

Our two-dimensional PCs are plotted at
left, where we show them to the same scale on the
two axes. We note that our data have roughly the
same appearance as our original, except for being
rotated to the new axes, and the first PC shows the

Two Principal Components

RN 22 IRAE R . & .. . . .
et ::f?:& (.:, . :(e.",f’. LA majority of the variation in the data, ostensibly
65.667 ~ 98.6% of it, while the second
65.667 +0.920

PC is the other 1.4%. This is clear justification
that we could neglect the second PC and just
choose to represent our data set with only a single
PC.
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First Principal Component, xi(2)
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2 Recall when multiplying matrices, the number of columns of the first matrix must be the same as the number of
rows of the second matrix. Here, for example, the first matrix is 2 x 2, and the second — a column vector —is 2 x 1.
The result has the number of rows as the first matrix and the number of columns of the second. 2 x 1 in this case.



Before we show the one-dimensional PC,
the student has the right to ask “what has become
of the other dimension?” Since we have reduced
the dimensionality of our data from two to one,
apparently, all yi(1) =0 (shown in column S in the
spreadsheet). Accordingly, we can now show a
plot of the one-dimensional PC at right. Here we
see all the variation in the collected data in a
single dimension, but we understand that we have T T e
lost, at most about 1.4% of the information we Principal Component, xi(1)

may have worked so hard to collect.

One Princ'ipal Component

=0
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Second PC, yi(1)
<

OK, so now are we done with this demonstration of PCs problem? Not quite ... we now
need to go back to “what are the values we’re supposed to use on the pixels?” That is, since we
have two real pixels, we need real numbers to put on them. To do this step, we return to our PC
transformation in Step 10, above, and “undo” it by left-multiplying by the inverse of the
transpose of the transformation matrix:

X*=(TT) TX = (TT) Ko = T e

where we are using the notation X* to indicate recovered data from PC-reduced data. The last
step in this equation comes from the fact that our transformation matrix was formed from
orthogonal characteristic vectors (eigenvectors), thus the inverse of the transpose (Step 9) is the
original transformation matrix itself (Step 8). For example, the first data point now becomes

e (0691 0)(20368) (14074
(0707 o)l 0 ) (14.400)
The inverse transformation (back to pixel data) has been done in columns U and V of the
spreadsheet, and now we can see what it looks like (and we’re done with this Problem):

30
4 ‘A‘
Vs
251 ‘,'
= &
[ &
& 201 ra
#
& 4
° &
D 15
g ] ra
é ] A
& ] ‘A‘
10 ‘A‘
5llll||ll||[lll|llll|llll
5 10 15 20 25 30

Recovered First Pixel, xi*



14-7. Tracking a Target On the DATA worksheet for this problem, you will find thirteen partial
frames of data taken by a large area surveillance sensor of a moving target. The frames have
been corrected for bad pixels, bias and gradients, and noise, and the background has been
suppressed. The frames were taken one second apart, and each pixel has a GSD of
approximately 800 x 800 m. Assume the orientation of the frames is aligned with the Earth’s
geographic coordinates, North up. Estimate the speed and heading of the target. Are these really
the target’s true velocity and heading? What other information might you need to know?

SUGGESTED SOLUTION: The companion Suggested Solutions (ODD) spreadsheet gives the
details of the centroid calculations for Frames 2 — 13. (We can tell from what we expect the
approximate shape of the target’s PSF to be that it is only partially showing on the edge of the
focal plane in Frame 1 — which is Murphy’s Law.) The counts (i.e., energies collected) in each
row/column are summed, then multiplied (weighted) by their respective row/column number.
The sum of the sums of the counts is then divided into the sum of the weighted products. The
results of the computation are summarized in this table, including the sum of target counts found
in each frame (proportional to the energy collected within the target’s PSF). The last column
gives the distance (in pixels) between successive centroids (to be discussed later) ~

--- CENTROID ---

FRAME ROW COoL COUNTS As
1 UNK UNK UNK N/A
2 17.65 6.15 48380 | -----
3 16.65 6.95 50868 1.28
4 14.85 7.95 54017 2.06
5 14.05 8.95 50955 2.79
6 12.05 10.15 49618 2.33
7 11.05 11.35 55277 1.56
8 8.85 12.35 55275 2.42
9 7.65 13.35 64068 1.56
10 5.65 14.15 57157 2.15
11 4.85 15.15 57790 1.28
12 3.05 15.95 65327 1.97
13 2.05 17.15 65954 1.56




When we plot our results, we can see the

path the target’s centroid has taken across our TARGETIN MOTION
FPA. It appears somewhat jerky probably 20
because of some jitter in the sensor’s pointing 18
control. Assuming the apparent path should be a 16 \
straight line, and to smooth it out, we can estimate " \\
the motion using MSExcel’s Add Trendline \
feature, giving us a best-fit linear equation. (The 1
equation’s notation is “x” = column and “y” = E 10
row. Remember to check the equation to 8 \
ascertain it actually approximates your data! You . \
might need more decimal places.) . y = -1.4557x + 26.801

The apparent speed of a target moving \
across a focal plane was discussed at some length ? )
in Problems 13-7 through 13-10 where we did not 0
see the computed centroids as given here. Here ¢z e SCDLSMNH ot s
we assume that speed across the focal plane (in

pixels per second) is directly proportional to apparent ground speed, since we have that one pixel
represents a GSD of 800 meters.

A preliminary calculation of As = \/(Arow);Z +(Aco|umn)2 , shown in the last column of

the table, suggests that this target is neither accelerating nor decelerating. At least there is
enough irregular change in the values from frame to frame that no clear trend is noted. We
therefore will make the assumption the apparent speed (along a straight path) is supposed to be
constant, and may be calculated, in engineering units, as an average speed:

7 Apixels( 800 m m
Atime | pixel s |
We learned from the previous problems (Chapter 13) the minimum error in this estimate will be -
1.4557when we take the end-points to be as far apart as possible, meaning values from Frame 2

and Frame 13. Taking the centroids for those frames, and noting the time difference is 11
seconds, we get ~

V ~

J(2.05-17.65)" +(17.15-6.15)’ (800 m

: ~1388m-s™.
11s pixel

This being an estimate, one can always ask “Is there a
better answer?” The answer is “maybe” by considering this:
We have reasonable assurance that the trendline is close to
being an accurate depiction of the actual (apparent) track, but
the end-points we just used do not lie exactly on the trendline.
Can we make use of the trendline somehow?

Looking at the figure at left, which is a magnification
of the trendline passing near the Frame 2 centroid, we see that
we could use the trendline equation in two different ways. If




we believe the column part of Frame 2’s centroid is correct, then the trendline gives us an
adjusted row value at A:

row, = —1.4557(6.15) +26.801=17.85.

But on the other hand, if we believe the row part of Frame 2’s centroid is correct, then the
trendline gives us an adjusted column value at B:

column, = 17.65-26.801 ¢ o9,

—1.4557

However, a better solution is to apply the logic of the trendline, namely that it is a best-fit
to the data constructed in a statistical least-squares fashion. That is, the trendline passes next to
each data point so as to minimize the sum of the variances of its closest approach to each point.
This is depicted as C in the figure, which is seen to be closer than A or B. To find C, we
calculate the equation of a line passing through the data point perpendicular to the trendline, then
solve the two equations (new equation and trendline equation) simultaneously. The details of
this are left as an exercise for the student, and the results for Frame 2 and Frame 13 adjusted
centroids are

--- ADJUSTED ---

Frame ROW COoL
2 17.71 6.24
13 1.98 17.05

Now we can make a better (our best?) estimate of the target’s apparent speed ~

V=

J(1.98-17.71)’ +(17.05-6.24)° (800 m
11s pixel

Jz1388m-s‘1.

WELL! Our estimate did not improve for this data set, but the method is recommended
for “best” results.

Finally, we need to compute the target’s apparent heading (direction of travel). We could
make sure the plot above is drawn to scale and measure it with a protractor, or we could suppose
the trendline equation is correct. In the latter case, the leading coefficient, the slope, is the
tangent of the angle the line makes with the x-axis. Inspection of the data makes sure we get the
direction right (the target appears to be moving southeast, if we assume the rows and columns
are aligned with Earth’s longitude and latitude, respectively). Thus:

0 =tan™(—1.4557)~ —55.5°.

Heading, however, is usually referenced to North, we need to add 90° to get ~
TH =90° + 55.5° = 145.5° (clockwise from North).

COMMENT: All of the above should be approximately correct if the target is moving on the
ground, or at least at a constant altitude. (Note the target’s speed is about Mach 4.0 at sea level.)
The increase in target energy noted in our centroid calculations may indicate that it is climbing
through the atmosphere ~ the atmospheric attenuation is decreasing. This is indeterminate from
these data, so we would need some corroborating evidence to confirm this.






