
CHAPTER 13 ~ SUGGESTED SOLUTIONS (ODD) 
 

13-1.  A Little Rocket Science.  Suppose that the Rocket Boys
1
 of southern West Virginia 

construct a rocket out of a ℓ  1 m steel pipe
2
 (O.D.  4” and I.D.  3.5”) with a h ≈ 6” solid steel 

nose cone.  (Assume the steel has about the density of iron FE  7.68 g/cm
3
.)  They fill the tube 

with a “rocket candy” solid fuel having ISP  100 s and RC  1.38 g/cm
3
.  Using just Newtonian 

physics by neglecting air drag and ignoring any nozzle-induced pressure differential components 

of thrust (simple rockets like this one don’t have nozzles to speak of), calculate the time from 

ignition to burn-out, the vertical velocity at burn-out, and their expected maximum altitude.  The 

mass flow rate during burn is approximately 2.45 kg/s. 

 

SUGGESTED SOLUTION  Working with the volumes and masses first, 

but ignoring any additional mass of possible stabilizing fins ~ 
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Nose Volume, 412 cm
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 0LIFT-OFF MASS, ( ) 26.3 kgRB NC RCm m m m     

 BURN-OUT MASS, 17.8 kgBO RB NCm m m    

 Now for the motion:  Newton’s Second Law says for the powered flight portion of the 

launch … 

Thrust Weight e

dv
F ma m mv mg

dt
       

since we are neglecting drag, and we’re assuming there is no pressure differential component to 

thrust.  With 0m m mt  where m  is the (constant) mass flow rate, t is time after ignition/lift-

off, and taking ev  to be a constant characteristic of the motor, we have, upon integrating
3
 ~ 

                                                 
1
 Original title of the autobiographical book now known as “October Sky” by Homer Hickam, Jr.  (Delacorte Press, 

1998).  It was dramatized in a film in 1999 that doesn’t exactly follow the book.  Note that Rocket Boys is an 

anagram of October Sky. 
2
 O.D. means outside diameter and I.D. means inside diameter (of a tube or pipe).  Assume the density of steel is the 

same as that of iron, FE  7.68 g/cm
3
. 

3
 Thanks to the CRC Standard Math Tables, 26

th
 Edition (CRC Press, 1981). 
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and assuming motion is only in the upward (z) direction
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 Now we need ev  which we get from the specific impulse ~ 
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We also need the rocket motor burn-out time, BOt , which we get from ~ 
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Then noting that BO RCmt m , we can plug in for the burn-out speed
5
 ~ 
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and for the burn-out altitude … 
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 The burn-out time, location (altitude in this case), and speed are known as the the BURN-

OUT STATE VECTOR, ( , , )BO BO BOt z v , which inserts the rocket into its gravity-only ballistic 

mid-course flight.  (Although this model rocket probably does not go high enough to escape the 

influence on atmospheric drag.)  At that point, the rocket body just obeys the usual kinematic 

rules of freshman physics (assuming its max altitude is much less than RE so we can ignore the 

altitude-dependence of g), from which we can calculate the time to reach apogee and its altitude 

(when 0v  ): 
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 Thanks again to the CRC Standard Math Tables, 26

th
 Edition (CRC Press, 1981). 
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 Note the average acceleration is approximately 
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.  If you were an 

astronaut on this rocket, it would definitely not be a soft ride. 



 
  

2
12

2 2

2

352m s
2 ( ) 572m 6,890 m

2 2 9.81m s

BO
BO BO APOGEE BO

v
v v g z z z z

g






        


. 

 This is impressive, but then this self-made model rocket is significantly larger than the 

sort of thing that is available through hobby stores.  (Don’t try this at home!) 

COMMENT:  It is probably a serious error to neglect atmospheric drag since this simple-minded 

calculation produced a speed of about Mach 1 ( 300 m/s) without it.  This would complicate the 

problem, however, so we won’t include it.  Also, the drag would play a big role in the descent 

from apogee ~ the rocket body may attain its terminal velocity and would take a longer time to 

come down than it did to go up.  Yet another complication we could crank in would be the 

addition of a nozzle on our rocket.  There would then be no closed-form solution because 

atmospheric parameters would have to be calculated along the trajectory. 

ANOTHER COMMENT:  Considerable Googling turns up mass flow rates ( m ) in the 

neighborhood of a few kilograms per second, and ISP values in the neighborhood of 100 s for 

model rocket engines.  There seems to be a difference between “choked” and “unchoked” 

motors, but we won’t touch that one either at this level of difficulty. 

 

13-3.  Propulsion:  Conservation of Momentum  Imagine that you are sitting in a sled, at rest, 

on a frictionless surface.  You and your sled have mass “M”.  You also have another “fuel” mass, 

“m”, with you on the sled.  You throw the fuel mass off the back of the sled with speed “v” 

RELATIVE TO YOURSELF.  (a)  Using conservation of momentum, calculate your reaction 

speed, “V11”.  (b)  Now reset the problem (you’re at rest again with m on your lap) and imagine 

that you break m into two equal pieces, m/2.  Using conservation of momentum, calculate your 

reaction speed “V12” after throwing the first half of the fuel off the sled.  Then calculate your 

reaction speed “V22” after throwing the second half of the fuel off the sled (while you’re in 

motion from throwing the first half).  [Reminder:  you always throw a mass off the sled with 

speed v relative to yourself, regardless of your state of motion.]  (c)  Repeat the problem 

breaking m into three pieces, m/3, calculating your speed V33.  (d)  Finally, generalize the 

problem by breaking the fuel into N pieces, m/N, and calculate your speed, VNN. 

 

SUGGESTED SOLUTION 

(a)  First, watching from a stationary reference 

frame (at right), you see me, my sled, and the 

fuel.  Then I throw the fuel off the back of my 

sled, giving … 
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(b)  Second, my throwing off half the fuel (top part of sketch below) gives a similar result: 
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At this point you can choose to continue to watch me from your stationary frame (at left, below): 
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or you can transform to a frame moving with me (at right, below) before I throw the second half: 

* *

22 22 12 220 with
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m
MV v V V V    . 

Both approaches give the same results (or anything algebraically equivalent) … 
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(c)  Third, if I break my fuel into three pieces, your conservation of momentum calculation (left 

as an exercise for the student) is 

33

1 1
1

1 23
1 1

3 3

mv
V

m mM

M M

 
 

   
  
 

. 

By inspection, you should hopefully start to see a pattern emerging, even though we’ve only 

thrown out two pieces of fuel. 

(d)  Using the method of reasoning called induction (going from specific cases to the most 

general case), the emerging pattern suggests that when I chop my fuel up into N pieces and throw 

them off the sled one at a time, I get … 
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where the summation notation makes things more compact. 

 Looking at this sum, “we” wondered what 

it looked like, so we plotted it (at right).  (See the 

companion spreadsheet for the calculation, 

dividing the fuel into 1, 2, 3, … 20 chunks, where 

I chose some values for M, m, and v.)  The shape 

of this curve is not obvious from the generalized 

summation, but apparently it tells me that I can 

actually get the most forward speed if I can throw 

my fuel off the sled in one piece.  That’s nice, but 

it may not be practically possible if the value of v 

(the surrogate for escape gas velocity, ve) is too 

high ~ I’m not strong enough to throw the whole 

thing off the sled at that speed.  (See the companion file, “Chapter 13 ~ Suggested Solutions 

Appendix I” for a complete analysis of the N-chunk problem.) 

 

13-5.  Co-addition of Frames.  In a certain situation we want to locate some nighttime activity 

that is characterized by some outdoor lighting that amounts to an area with an average in-band 

radiance of about 10
3
 W/m

2
sr.  As a worst case, surrounding events, reflections from external 

sources, and internal detector and electronic biases and operating conditions provide a random 

noise floor equivalent to about 5 × 10
3
 W/m

2
sr in the scene.  Clearly, the signal-to-noise ratio 

(SNR) is prohibitively low to allow reliable detection.  However, we know that we can enhance 

the SNR by the co-addition of frames.  If we want to boost our SNR to at least 4 for positive 

identification, how many frames of data must we co-add? 

 

SUGGESTED SOLUTION  Astronomers use this all the time.  To see a star that is only about 

20% as bright as the background noise, they overlay (add with PhotoShop or equivalent) 

multiple images, say M of them.  This artificially enhances the signal-to-noise by a factor M .  

Here we want to go from 0.2 to 4, so … 
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Thus in principle we can enhance the signal to noise by co-adding 400 frames.  Other problems 

associated with this procedure may be (1) do we have the patience to collect 400 frames in the 

first place, (2) what else might be changing while we’re trying to collect the frames (distance to 



target, background, etc.), and (3) can we co-register the frames all to the same geolocation.  

There are many other problems associated with this method you could think of. 

 

13-7.  Temporal Superposition.  A fighter aircraft carries two pods of 19 each 2.75” white 

phosphorous (WP, or affectionately “Willy Pete”) rockets – one under each wing.  If the pilot 

holds down the trigger and fires them all at a target in about eight seconds (they fire sequentially: 

left-right-left-right- … ), estimate the maximum intensity we would see with an AIRS sensor.  

Each rocket’s launch signature is approximately one second long. 

 

SUGGESTED SOLUTION Below left (next page) is a hypothetical launch signature of a WP 

rocket as it comes out of its pod ~ modeled as a constant burn for about one second.  Supposing 

the rockets fire at a constant rate from each pod ~ that’s 38 rockets per eight seconds, or close 

enough to approximately 0.20 s per rocket.  If the pilot holds the trigger down, their composite 

launch signature will look something like the middle figure (which is a theoretical superposition 

of 38 individual signatures at high time resolution ~ see spreadsheet).  The maximum apparent 

intensity is about five or six times that of one rocket, and lasts for a total of about 8.5 seconds.  If 

an overhead sensor, integrating/sampling at 5 Hz say, sees the launch, its output may be 

somewhat as shown at right.  The apparent signature is clearly greater and longer than that of a 

single rocket.  As with other events, it would take more information than just this one collection 

to ascertain what it was. 

 

          
 

 

13-9.  Temporal Sampling.  On the Suggested Problems DATA worksheet for this problem you 

will find a (synthetic) transient event signature, provided at a time resolution of 0.005 s. 

A.  Assuming the phase of the event is coincident with the start of a sensor’s integration 

time, show what the collected signature looks like for sampling at 1 Hz, 2 Hz, 5 

Hz, and 10 Hz.  (Assume 100% duty cycle for simplicity.) 

B.  Show what the 10 Hz collected signature looks like when the event begins 0.02 s, 

0.04 s, 0.06 s, and 0.08 s after the start of the sensor’s integration time. 

C.  Again assuming no phase difference, show what the signature looks like when 

sampled at 20 Hz, 50 Hz, and 100 Hz. 

D.  What sampling rate is optimum for this event? 

 

SUGGESTED SOLUTION: 



A.  The problem does not specify the units for the signature given in the event file, so we will 

just take it to be something proportional to the amount of energy received by the sensor during 

each 0.005 second integration period.  So instead of integrating the area under the curve – as the 

sensor temporally integrates its input signal – we will simply add the values given at their 

collection times.  To show the sampled signatures, we will then “normalize” the results (see 

spreadsheet) to a maximum value of 100 (whatever units) for each signature.  We will do the 

sampling at the various rates by supposing the energy collected during each frame is reported at 

the beginning of the sampling interval.  Here are the results of undersampling ~ 

 

B.  The event signature has been “phased” and sampled on the Suggested Problem Solutions 

(ODD) worksheet by pushing the given event signature “down” by 0.02, 0.04, 0.06, and 0.08 

seconds.  The delayed events have then been sampled at 10 Hz as above, and the results are 

shown here.  Note the difference in appearance of the apparent signature. 

 
 

C.  This time the event (zero phase) is oversampled.  The following plot shows the results. 



 
 

D.  Certainly we see that sampling this transient signature at 1, 2, or 5 Hz is not fast enough to 

see any details in the changing signature; we would call this undersampling.  On the other hand, 

sampling at 20, 50, or 100 Hz is clearly fast enough to see the details, but these are probably 

more information than we need, so we would call them oversampled.  Furthermore, we must 

remember the faster we sample the shorter time interval we have to collect energy, so we are 

going to be more subject to noise (which was not a factor in this simulated signature). 

 The optimum sampling rate therefore appears to be 10 or 20 Hz to preserve the 

approximate shape of the signature (at least for this one).  To be slightly more analytical, we note 

that the fastest rate of change of the signature occurs between 0.0 and 0.1 seconds.  To 

adequately sample this change, according to the Nyquist sampling theorem, we should therefore 

sample at about every 0.05 seconds, or 20 Hz.  This is satisfactory for this particular (synthetic) 

signature, but is not a general rule, although the difficulties associated with faster sampling – low 

integrated energy and too much data to process – may limit practical sensors to about this 

maximum rate. 


