SUGGESTED SOLUTIONS (ODD)

CHAPTER 9

NOTE: Use three-digit precision for all calculations unless otherwise stated or implied.

9-1. Dye Filters. A major manufacturer of optical components can supply “subtractive” dye
filters in the visible bandpass. The plot below shows the transmission of the Cyan and Yellow
filters. A data sheet for the two filters is given in the companion spreadsheet. Calculate and plot
the resultant effective filter, as in Figure 9-2 of the text, when the two are combined. What is the
maximum transmission of the combination filter, and what are the short- and long-wavelength
cutoffs at the half-maximum, 10%, and 1% points?
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SUGGESTED SOLUTION: The companion solutions spreadsheet calculates the product of the
two filter functions. By inspection, the maximum transmission is 86.17% at a wavelength of
approximately 569.7 nm. The following table gives the short- and long-wavelength cutoffs for
the three conditions specified, as well as the filter’s bandpass width and center. The half-
maximum width (often called Full-Width-at-Half-Maximum, FWHM) refers to one-half of the
filter’s actual maximum transmission, while 10% and 1% cutoffs refer to the actual 10% and 1%
transmission limits, respectively. Note that there is probably considerable uncertainty as to
exactly where the 1% points are, particularly on the short-wavelength side. [All values in the
table are in nanometers.]

Transmission Maximum

Short- . Filter Long- '] /
Filter 0.9
wavelength width center wavelength 0.8
cutoff wavelength cutoff c 07]
FWHM | 5220 | 70.6 | 557.3 592.7 3 06
10% 510.1 90.8 555.5 600.9 G 0] _—
1% 406.4 204.6 508.7 611.0 g 2‘3‘
=] 1%
0.2
(This combination filter is very close to what the o.lfl 10% <
manufacturer would provide as a subtractive T L L SV
400 450 500 550 600 650 700

Magenta fllter) Wavelength (nm)



9-3. Algebraically Adding Two Light Waves. Show that the two light waves in Problem 2
algebraically added together are

E =~ 2.83sin [% + 93.5°]

SUGGESTED SOLUTION: The answer is given in the text as Equation 9-3, but to show that it
is correct, add the two waves together and postulate the answer to be a single sine wave with an
unknown amplitude, A, and phase, v :

Aisin(27z'ft+gol)+Azsin(27rft+g02): Asin(27zft+1//)
Now use the trig identity sin(6,+6,) =sin6,cos, +cosd,sin 6, to expand the waves on both
the left and the right ~
A [sin(2z ft)cos g, +cos (27 ft)sing, |+ A,[ sin (27 ft)cos g, +cos(27 ft)sin g, |
= A['sin(27 ft)cosy +cos (27 ft)siny |.
Next, regroup the terms in a more suggestive manner:
sin(27 ft)[ A cosg, + A, cos @, | +cos(2z ft)[ A sing, + A,sing, |
=sin (27 ft)[ Acosy |+ cos(27 ft)[ Asiny].
For this equation to be true, the coefficients of sin(2 ft) andcos(2zt) on the left and right
sides (terms in square brackets) must be equal; so write them out ~
Asiny = Asing, + A,sing,
Acosy = A cosg, + A, cosp,.

Note this has turned one equation into two, which is the prescription necessary for solving for the
two unknowns A andy . To solve for A, square these two resultant equations,

(9-3-1)

AZsin®y = A’sin’ g, +2A A, sin g, sin g, + AZsin® g,
A% cos® = A? cos’ g, + 2A A, COS ¢, COS @, + Al cos® @,
add them together,

A [sin® y +cos’y |
= A?[sin’ g, +cos’ g, |+ 2AA, [cos g, COS g, +singsing, |+ A7 [ sin’ g, +cos g, |,
and use the Pythagorean trig identity sin®6+cos*6=1:
A? = A*+2AA,[cosp, cos g, +sing,sing, |+ A,

Finally, use the trig identity cos¢, cose, +sing,sing, =cos(¢, —g,):

A? = A +2AA cos(p,—p,)+ A



To solve for the phase angle, , the two equations (9-3-1) may be simply divided, and use the

fundamental trig identity siné =tané@:
cosé

Asiny _tanw = Asing + A sing,
Acosy A cosg, + A, cosg,

This derivation fills in the gaps for Equation 9-3 in the text, and now we can calculate ~

A:\/42+2-4-3cos(%—7rj+32 ~2.83,
which is quite straightforward, and ~
4sin£+3sin7r

v =tan™ 7‘; ~ —86.5°,
4cosz +3cos

which is not straightforward. The difficulty with applying the formula for phase angle is that
calculators and computers always return the Principal Value of inverse trigonometric functions.
This is the blue line in the graph of the tangent, below, where the apparent phase angle is marked
with a red triangle. But with the tangent — and all periodic functions — there is the possibility that
a value in another cycle of the function could be the correct one (the other red triangles). In the
case of the tangent, a peek at the plot given in Problem 2 suggests that we should choose the
value on the green branch near 90°.
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Therefore, moving to the correct branch of the tangent, yy = —86.5°+180° =93.5°, we
have ~

E =~ 2.83sin [% + 93.5"] ,

but care must be taken when computing this resultant wave in making sure the argument of the
sine function is either in radians or degrees (but not mixed).



9-5. Reflection and Transmission Criteria. Referring to the
simplified thin film application, Figure 9-6 (reproduced at right
and slightly modified with the addition of point G), derive the
optical path length difference Equations 9-8 and 9-11 for
reflection and transmission, respectively:

I'=2ndcos g +§ (9-8)
and ['=2nd cos S (9-11)

[HINT: You will need a trig identity or two, and the red arrow

reminds you where there is a 180° phase change on reflection.] a2 e

SUGGESTED SOLUTION: For reflection, E is abeam C, and we need the difference between
paths A-to-E and A-to-B-to-C. So first look at right triangle A-E-C, and note that angle A-C-E
is the same as the incident angle: ZACE=6,.. Then,

AE = ACsiné,,, = 2AG(nsin ) = 2nAGsin

i =1), and have introduced the distance
A-to-G which also appears in right triangle A-G-B. Now in right triangle A-G-B, we have
BG=d, and thus AG=dtan 8. Substituting,

where we have made use of Snell’s Law (assuming n

- HJ
AE =2n(d tan £)sin = 2nd sin”
cos B

Since n,, =1, this physical distance is the same as the optical path distance.

Now turning our attention to path A-B-C, which equals twice path A-B, we also have in

right triangle A-G-B that AB = BG = 4 . The physical path is thus 2AB = 2d , but the
cosp cosp cos B
optical path is
onAB--2nd
cos

which is the measure of the path length in wavelengths reduced by the index of refraction (n) in
the thin film.

The difference between these optical path lengths is partly what we are seeking:

) -2 a2 2
2nd _ong 2N ﬁZan(L_sm ’B}:an(wj:an(M]:an cos 8

cos cos B cosp cosp cos cos B

In addition to this term, electromagnetic boundary conditions impose the stipulations that the
tangential (to the interface between air and material) component of the electric field but the
normal component of what is called the displacement field (a relative of the electric field) must
be continuous from one side to the other. (See advanced texts in electromagnetic theory.) When
the light beam passes from a medium of lower to a medium of higher index of refraction, these



conditions cause the reflected portion to flip over — to have an additional 180° (or & radians)
phase change, which is the same as a one-half wavelength shift in the optical path length.! Thus,

I'=2nd cosﬂ+%

Now that the reader has seen how the difference in optical path lengths is derived for
reflection, it will be left as an exercise within this solution for the reader to perform the same
manipulations for transmission. It goes the same, but without the added half-twist at the end.

9-7. More Reflection and Transmission Criteria. Again refer to a Ray 1 Ray 3
modified version of Figure 9-6 (points G and H have been added), wt e
but this time let the top, middle, and bottom materials have indices
of refraction n;, n,, and n, such that n, <n, <n;, like a thin “anti-
reflection” coating on the lens of your eyeglasses. (Note that light
rays now bend toward the normal at both interfaces according to
Snell’s Law: 6,. > > y.) Find the optical path length differences
(like Equations 9-8 and 9-11) for Rays 1 and 3 and for Rays 2 and n,
4, and deduce the criteria for reflection and transmission from/

through the thin film. [HINT: Red arrows remind you where the
light waves have a 180° phase shift on reflection (only).]
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SUGGESTED SOLUTION: First, we consider Ray 3 at C where it is abeam Ray 1 at E. The
optical path length (measured in wavelengths) difference is

I'.c =0opl(ABC)-opl(AE)
= {nzﬁ+ A, nzlﬁ:} —[i + nlﬁ}
2 2
= 2n,AB—n,AE

where “0lp(-)” means optical path length and the overbar notation means physical path length.
As in Problem 5, looking at right triangles A-G-B and A-E-C we have ~

AB=—¢
cos B

and AE =2AGsiné

inc

=2dtan #siné, .

Substituting these expressions, doing a little rearrangement, using Snell’s Law, and pulling out a
couple of trig identities gives us the difference we are looking for:

! Is the wave shifted 180° (or one-half wavelength) forward or backward? That is, should we use a plus or a minus
sign? It doesn’t make any difference because the wave is periodic, so you can’t tell the difference physically.
Mathematically, chose whichever sign makes the solution most convenient. In this problem, we’ll chose to add a
half wavelength, but in a later problem, we’ll see that it makes more sense to subtract a half wavelength.



[.e=2n, (é]— n,(2d tan Ssing,. ) =2n, cociﬁ’ —2d tan #(n;sin6,,.)

3 d . _ 1 sing .
=2n, o5 F 2d tan B (n,sin ) znzd(—cos,ﬁ cosﬂsmﬂ]
:and(—l_SinZﬂ]:znzd(COSZﬂ}I2n2dCOSﬁ.

cos B cos f

From this relation, we reason that constructive interference (reflection) will occur when
the opl is an integer multiple of the wavelength, but we will have destructive interference (no
reflection) when the opl is a half-integer multiple. Summarizing:

mA for constructive interference (reflection)

I'ce=2n,dcosf =
o = 2000055 {(m —0.5)4 for destructive interference (no reflection)

where m is a positive integer, m=1,2,3,....

Next, considering Ray 4 at D where it is abeam Ray 2 at F, the opl by the same math as
above is:

o =0pl (BCD)-opl (BF) = {—%+ n,BC+ nzﬁ}—[nsﬁz]

— — A d . A
=2n,BC-n.BF—==2n,| —— |—n.(2d tan Bsiny ) ——
7 3 5 Z(COSﬂJ 3( B 7) 5

d . A d . A
- 2n2(w]—2d tan 4 (n,sin ;/)—E = Zn{COS[J—Zd tan 4 (n,sin ﬂ)—E

:2n2d[ 1 _Si”ﬂsinﬂ]—gzmzd(w}i

cosf cosp cos B 2
2
=2n,d cos p —i=2n2dcosﬂ—£
cos B 2 2

(We have chosen the 180° phase shift to be represented by —% for reasons that will become
apparent later. See Footnote 1 for Problem 5.)

From this second relation, we also see that constructive interference (transmission) will
occur when the opl is an integer multiple of the wavelength, but destructive interference (no
transmission) will happen when the opl is a half-integer multiple. Summarizing:

mA for constructive interference (transmission)

I',-=2n dcosﬂ—i—
eETe 2 |(m-05)4 for destructive interference (no transmission).
At first glance, the two opl conditions seem to be opposed to one another. However, we
can reconcile them as follows: for reflection from the thin film, we want the top surface opl to
constructively interfere upward,



I'.e=2ndcosf=ma,

but we want the bottom surface opl to destructively interfere downward (i.e., NOT transmit
through the interface), which is?

I'oe=2n,d cosﬂ—% =(m-0.5)4 -OR- 2n,dcos A =mA

THESE TWO CONDTIONS ARE THE SAME: THERE IS INDEED CONSISTENCY
BETWEEN THEM! Similarly for transmission through the thin film. We can therefore
summarize:

For reflection: 2n,d cos f=mA
For transmission: 2n,d cos 8 =(m—0.5) 4.

2 See here why we chose to subtract a half-wavelength instead of add it. Remember it makes no difference
physically, but it makes the math work out nicer.



9-9. Antiscratch Coatings. Camera lenses and eyeglasses often have a hard layer of magnesium
fluoride (MgF,, n = 1.38) on them for protection. If a typical layer is about 10 um thick, and the
glass has a nominal refractive index of 1.60, are there any wavelengths in the visible spectrum
that are specifically intensified (i.e., transmission enhanced)?

SUGGESTED SOLUTION: As shown in Problem 9, when a thin film’s substrate has a higher
index of refraction, the criterion for transmission (constructive interference) is
_2ndcos S

m-0.5
For most vision and photography, we suppose light is mostly normally incident, so cos S ~1
again. This leaves us with ~

2ndcosf=(m-05)2 = A

ond (2)(138)(10um) 276um
" m-05 m—0.5 " m-05

Examining this expression, we find that we don’t get to visible wavelengths (400 — 700
um) until around m =40 or so. Above that, yes, some wavelengths would constructively
interfere within the film and be enhanced. That’s assuming the light has another property not
previously addressed in this chapter: coherence. Coherence is the ability of light waves to
remain in phase with one another (and hence interfere) over long distances. The requirements
for coherent light are perfectly planar wavefronts and exact monochromaticity. Ordinary light
from the sun and most artificial sources does not generally meet these stringent tests. (Only
lasers come close, and then not over excessively long distances.) Thus, we can expect there will
be NO wavelengths that are specifically intensified in passing through the protective coatings on
our eyeglasses or camera lenses (as we confirm from daily experience).

9-11. Interference Filter. An interference filter using a thin film of material with index of
refraction n. =1.60 is designed to have a transmission peak AA,,, =5.00 nm wide about a

central wavelength® of 1 =632.8nm when used at normal incidence, and a (partially silvered)
reflectance of R =0.80 at the material-air interface. How thick must the film be?

SUGGESTED SOLUTION: First, from the width of the transmission peak, we need to perform
the following check ~
A(1-R)
Ay = ———
ﬂ’MIN mﬂﬁ

A 1-R 632.8nm |( 1-0.80
Ay \zR ) | 5.00nm )\ z/0.80
That is, since we are dealing with a transmission peak, the order, m, is supposed to be an integer,
which we have just confirmed. Evidently we are supposed to use m = 9 for this problem.

® He:Ne laser wavelength.



Proceeding, for constructive interference in the forward (transmission) direction we note
that =0° and calculate ~
2nd cos f=mAa
g__ M2 _(9)(6328nm) _(9)(632.8nm)
~2ncosf (2)(1.60)cos0°  (2)(1.60)(1)

~1780 nm =1.78 pm.



