
SUGGESTED SOLUTIONS (ODD) 

CHAPTER 5 
 

NOTE:  Use three-digit precision for all calculations unless otherwise stated or implied. 

 
5-1.  Transmission on a Slant Path.  If the percentage transmission of a beam of light straight up 

through a rural aerosol is 75%, what will be the percentage transmission of the beam through the 

same aerosol at an angle of 45? 

SUGGESTED SOLUTION:  Given (0 ) 0.75ATM   , then ~ 

 
sec45 1.41(45 ) (0 ) (0.75) 0.67ATM ATM 


      

where 
1 1

sec45 2 1.41
cos45 1 2

    


 

 

 

5-3.  Visibility Through the Fog.  You are driving to work through a rather thick fog in the early 

morning (the sun isn’t quite up yet).  You know you are coming to an intersection in the next 

half-mile where there is a traffic light.  Which color light will you be able to see at the greatest 

distance?  Which one at the closest distance?  [Note:  your choices are red ( ≈ 0.650 μm), 

yellow ( ≈ 0.590 μm), and green ( ≈ 0.550 μm).] 

SUGGESTED SOLUTION:  We must presume that we’re dealing with Rayleigh scattering 

through a mist of fine particles (5 – 50 m) because it’s the only regime that has a wavelength 

dependence that’s tractable to us.  (The Mie region is too complicated, and the optical regime has 

no wavelength dependence.)  Therefore, we’re working with scattering cross-sections that we 

will take to be 4
K


  where K is a constant for the interaction of electromagnetic waves with 

water droplets.  Peering out through our windshield, we will then suppose our visual acuity is the 

same for all three colors, and the minimum transmission we need through the fog to see any 

color of light is MIN  (often taken to be  2%).  We thus require 
4 MAX

K
n s

n s

MIN e e 
 

     

Solving for the distance, we have ~ 

4ln( )MIN
MAXs

n K




 
   

 
 

Thus we see that we should be able to see the longest wavelength (red) first, and the shortest 

(green) last. 

 

5-5.  More using Beer’s Law.  In addition to the molecules in the last problem (5-4), suppose 

there is also a particulate with a uniform density distribution of np = 3.00 × 10
14

 cm
-3

 from sea 

level to 20 km altitude having a scattering cross-section of σp = 10
-21

 cm
2
 for λ = 0.450 µm light.  

Calculate the vertical transmission to space through this two-component aerosol. 



SUGGESTED SOLUTION:  Because the density of scatterers is uniform, transmission through 

their layer is 
20 3 25 2 4(3 10 )(10 )(2 10 ) 0.549p p pn s m m m

p e e



        .  Combining this with our last answer 

from the previous problem, we have that the total transmission through this two-component 

atmosphere is ~  

2 0.45 (0.670)(0.549) 0.368p      

 

 

5-7.  Multiple Component Atmosphere.  Use the following model of atmospheric aerosols to 

calculate the atmospheric transmission factor along an 8.00 km horizontal path at wavelengths of 

0.500 μm, 1.00 µm, 5.00 µm, and 10.0 µm: 

 

Particle Diameter Density 

Smoke 0.05 μm 10
11

 m
-3

 

Fumes 0.5 µm 10
9
 m

-3
 

Dust 5 µm 10
5
 m

-3
 

Ash 50 µm 10
3
 m

-3
 

 

 See spreadsheet Chapter 05 ~ Suggested Solutions (Odd).xlsx for solution.  

 

 

5-9.  Application of Beer’s Law.  The Earth receives 485 W/m
2
 in the visible on its surface when 

the sun is directly overhead.  The atmospheric transmission factor is 0.900.  What is the 

irradiance on the surface when the sun is at a zenith angle of 30? 

SUGGESTED SOLUTION:  Given the irradiance at the surface at normal incidence, (0 )S E , and 

the vertical atmospheric transmission factor, (0 )ATM  , we can deduce the irradiance above the 

atmosphere from the sun, 0E , as 
2

2

0

(0 ) 485W/m
539W/m

(0 ) 0.9

S

ATM


  



E
E . 

 Meanwhile, we can calculate the atmospheric transmission function when the sunlight 

comes in from a 30 angle:  (30 )ATM      
sec30 1.15

(0 ) 0.9 0.885ATM


   . 

 Together with the incident irradiance from the sun, this gives a new irradiance at the 

Earth’s surface at a 30 zenith angle, (30 )S E , of 
2 2

0(30 ) (30 ) (539W/m )(0.885) 477W/mS ATM    E E  

 But wait (oh no, not again!)!  This is the irradiance at Earth’s surface on a surface 

perpendicular to the sun’s rays.  To calculate the irradiance on the ground, we need to correct for 

the zenith angle, which effectively spreads the power out into a larger area: 
2 2(30 ) (30 )cos30 (477W/m )(0.866) 413W/mON GROUND S     E E  

 



5-11.  Laser Sounding Experiment.  Return to the “laser radar” problem (4-22) and drawing in 

that problem set.  The thin dust clouds mentioned float around in the stratosphere at an altitude of 

about 40 km, and are thought to result from meteorite disintegration; the average particle size is 

around 0.02 μm.  If we shoot our ruby laser (λ = 0.6943 μm) into the air and time the duration of 

the echo, we can estimate that the dust layer is only about 500 m thick.  In 1965, Goyer, Watson, 

Evans, and Gearhart from the National Center for Atmospheric Research (NCAR) did this 

experiment using a ten joule per pulse laser and an old surplus searchlight mirror about 2.00 m in 

diameter.  They measured, on the average, 8.75 × 10
4
 photons per laser pulse (one millisecond 

pulses).  What was the number density of the dust cloud?  (Hint:  you can make use of the 

approximation  1xe x     when  1x ; but after using this approximation, you need to verify 

that it is valid.) 

SUGGESTED SOLUTION:  We’ll start this solution by noting that every laser pulse we shoot 

into the sky has about 0
PULSEE

N
hc


  photons.  Out of that number, we presume that around 

0TRANS DUSTN N   of them are transmitted through the dust cloud (per pulse).  That leaves 

 0 0 1SCAT TRANS DUSTN N N N      to be scattered by the dust cloud.  Checking the parameter 

0

0.6943
11.05

2 (2 )(0.01 )
m

r m


  
  , we see that our dust cloud scattering falls into the 

Rayleigh regime (which we also confirm by noting our estimated particle size falls in the middle 

of the “Rayleigh Particle” range in the figure in the last problem).  Accordingly, the phase 

function (directions our photons are scattered into) for Rayleigh scattering is  23
1 cos

16



 , 

which is 
3

8
 for back-scattered ( 180   ) photons.  Hence we will treat the small volume of the 

dust cloud from which laser photons are scattered as having a “photon intensity” (per pulse) of 

3
photons/sr

8

SCAT
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N
I


 .  The “photon irradiance” we receive back on the ground is 

therefore 2

2
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I

R
E , and the number of photons collected by our sensor is 
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 The only term in our last expression that 

is not a given is DUST DUST DUSTn s

DUST e
  

 .  We will 

take the hint in the problem stem and write this as 

DUST DUST DUST DUSTn s    where DUSTn  is the 



unknown.  The term 2

0 *DUST r    where *  is found to have the value 0.00068 on the 

Scattering Cross Section of “Spheres” chart (the entering argument was calculated above).  

Substituting it all in, we have ~ 

  2 2
2 2

0
0

2 2

3 1 1 * 3 *

32 32

PULSE DUST DUST
PULSE DUST DUST

E D n r s E D n r s
N

hcR hcR

        
   

And solving for DUSTn  ~ 

2

2 2

0

34 8 4 4 2
11 -3

6 2 8 2

32

3 *

(32)(6.63 10 J s)(3 10 m/s)(8.75 10 photons)(4 10 m)
10 m

(3)(0.6943 10 m)(10J)(2m) ( )(10 m) (0.00068)(500m)

DUST

PULSE DUST

hcNR
n

E D r s  





 




    
 



 

Finally, we need to check to see if our approximation was valid ~ 

2 11 -3 8 2

0 * (10 m )( )(10 m) (0.00068)(500m) 1DUST DUST DUST DUST DUSTn s n r s          .   

 


