
SUGGESTED SOLUTIONS (ODD) 

CHAPTER 7 

NOTE:  Use three-digit precision for all calculations unless otherwise stated or implied. 

 

7-1.  Work Function.  Is the energy of a 1.2μm   photon sufficient to generate a 

photoelectron from a material having a work function – or band gap energy (between valance 

and conduction bands) – of 1.2eV  ? 
 

SUGGESTED SOLUTION:  The energy of a 1.2 μm   photon is approximately 

1.24
1.03eV

( )
PHOTON

hc
E

m  
    

Since PHOTONE  , this photon does not have sufficient energy to promote an electron across the 

band gap between the valance and conduction bands.  So the short answer is “NO.” 

 

 

7-3.  Photodetector Output.  A photodetector receives 
6 21.09 10 W/m E  of 2.67μm   light 

on its surface from an external source.  Its area is 100 100μmdA   , its quantum efficiency is

0.35  , and its integration time is 0.10sINTt  .  What is the number of electrons, N , output 

by this detector in one sample? 
 

SUGGESTED SOLUTION:  Phenomenologically in words ~ 

Electrons Power Energy Electrons Time
Area

Sample Area Photon Photon Sample
      

which translates into symbols ~ 

1 d INT
d INT

A t
N A t

hc hc







     

E
E  

and then into numbers ~ 

      

  

2
6 2 4 6

34 8

1.09 10 W/m 10 m 2.67 10 m 0.35 0.10 s
5120 electrons

6.63 10 J s 3 10 m/s
N

  



 
 

  
 

 

 

7-5.  Digitized Output.  If the detector in Problem 7-3 is designed to saturate for a source that is 

20 times brighter than the source detected in that problem, and its output is digitized to 12 bits, 

what is its digitized output when it sees a source giving an irradiance of 
6 25.7 10 W/m E  on 

its surface? 

 

SUGGESTED SOLUTION:  See the suggested solution for Problem 7-7. 

  



7-7.  More Digitized Output.  If the detector in Problem 7-3 is designed to saturate for a source 

that is 20 times brighter than the source detected in that problem, and its output is digitized to 12 

bits, what is the irradiance on its surface if its output is 1945 Digital Units (DU)? 
 

SUGGESTED SOLUTION (for Problems 7-5 and 7-7):  For both problems, we calculate that 

the “saturation” input to our photodetector is 6 2 5 220 1.09 10 W/m 2.18 10 W/mSAT

     E .  

Using the same proportionality (or the phenomenological equation we developed for Problem  

7-3), the saturated output is then 20 5120 electrons 102,400 electrons (e )SATN    .  This, we 

are told, would be scaled to 122 4096  divisions, or bins, on a new scale (0 through 4095 

inclusive) which can be represented by a 12-bit binary number.  (The divisions are called digital 

units (DU) which are visually shown as shades of gray.)  Accordingly, each bin (i.e., “bit”) 

represents an output of 102,400 e
-
  4096 bits ≈ 25 e

-
/bit.  Hence, for example, our digitized 

detector output for Problem 7-3 is 5120  25 = 204.8 bits  205
th

 bin  204 DU (because the 

first bin is number zero).
1
  To convert this to binary, we note that 204 = 128 + 64 + 8 + 4 = 2

7
 + 

2
6
 + 2

3
 + 2

2
.  Using 1’s and 0’s, this number

2
 is 000011001100 in binary.  These results are 

shown in the table below. 

 For Problem 7-5, we find, proportionately, that the given input represents  

6 2

5 2

5.70 10 W/m
102,400 e 26,780 e

2.18 10 W/m


 




 


, which is 

26,780e
1071.2 1072 bits

25e /bit




    

1071DU .  These results are also shown in the table, together with the binary representation of 

1071 = 1024 + 32 + 8 + 4 + 2 + 1 = 2
10

 + 2
5
 + 2

3
 + 2

2
 + 2

1
 + 2

0
. 

 For Problem 7-7, the meaning of the given 1945 DU is that we have electrons filling at 

least 1945 bins (1945  25 = 48,625 e
-
), but possibly with some electrons in the 1946

th
 bin 

(48,650 e
-
).  [COMMENT:  at the level of precision we are used to dealing with – three 

significant digits usually, although we slip in a fourth once in a while when it’s convenient – it 

turns out that we don’t have to worry about one or two DUs here and there; we can probably 

tolerate a 100 electron (4 DU) ambiguity.]  Again using proportionality, we calculate that the 

input to the photodetector that gave us this output was ~ 

5 2 5 248,625 e
2.18 10 W/m 1.04 10 W/m

102,400 e


 


     

This result is shown in the third line of the following table.  The table summarizes our 

calculations for three problems, with givens shown in blue and results in red. 

  

                                                 
1
  Note there is a “quantum ambiguity.”  Any number of electrons between 5101 and 5125 would give us the same 

bin number, or DU.  Thus we cannot go backwards with certainty from DU to number of electrons (Problem 7-7). 
2
  There are only 10 kinds of people:  those who can read binary and those who can’t. 



 
Irradiance on 
photodetector 

(W/m2) 

Photodetector 
output 

(electrons) 

Photodetector 
output 
(DU) 

Photodetector 
output 
(binary) 

Problem 7-3 1.0910-.6 5120 204 000011001100 

Problem 7-5 5.7010-6 26,780 1071 010000101111 

Problem 7-7 1.0410-5 48,625 to 48,650 1945 011110011001 

“Saturation” 2.18 10-5 102,400 4095 111111111111 
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7-9.  Calculating Detector Output.  In a laboratory, radiation from a one-inch square, T = 350 K 

diffuse blackbody source is collected by a DL = 4" diameter f/5 lens R = 2.0 m away and is 

focused on a Hg:Cd:Te photodetector with the quantum efficiency shown above.  The detector 

has a DD = 1" diameter photosensitive surface.  The detector is operated at fD = 10 Hz with a 

99%DC   duty cycle.  What is the output of the detector in electrons per integration time, N ? 

 

SUGGESTED SOLUTION:  Let’s look at a phenomenological solution: 

 First, the source is a Lambertian blackbody, emitting radiation B(,T) [W/(m
2
m)] 

which is its spectral exitance.  The spectral radiance is therefore 
B

L 



  [W/(m

2
sr m)].  From 

the lens, the source subtends a solid angle 
2

X Y

R
   [sr] where X and Y are the linear dimensions 

of the source (X = Y = 1 inch = 0.0254 m).  Since the source dimensions are small compared to R 

(2 m), we can approximate the spectral irradiance on the lens from the source as 

2 2

B X Y BX Y
L

R R

 
 

 
   E  [W/(m

2
m)].  The spectral power passing through the lens, and 

imaged onto the detector’s surface is thus 
2 2

2 24 4

L L
R

X Y B D X Y D B
A

R R

 
 




   E  [W/m] 

where LD  is the lens diameter ( 4 in 0.1016 mLD   ).  Note that we are assuming both the 

atmospheric and optical transmission functions (ATM and OPT) to be unity.  Note also – and this 

is really important – that we have carried the “per unit bandpass” or “per micron” along with us 

through the calculation so far.  This is because we haven’t applied a bandpass yet. 

  



 Dropping back a moment, note that the aperture stop ( / #
eff

L

f
f

D
 , where feff is the focal 

length and LD  is the aperture diameter) implies that the focal length of the collecting lens is 

 # 5 1.1016 m 0.508 meff Lf f D     .  Using the image finder’s formula, 
1 1 1

O I effd d f
  , 

where dO is the object distance (R in our case) and dI is the image distance, we calculate the 

image distance to be 
2m 0.508m

0.681 m
2m 0.508m

O eff

I

O eff

d f
d

d f


  

 
.  We then have that the image 

magnification is 
0.681

0.340
2

I

O

d
M

d
   , and hence the size of the image of the blackbody 

source on our photodetector is approximately 2.54 cm × 0.340 = 0.865 cm on a side.  This is 

sufficiently small that we can assume that all of the photons we will calculate next will fall on 

the detector’s surface and be converted into electrons through its quantum efficiency. 

 Now, the energy per photon (wavelength in meters) arriving at the detector is 
h c

E


  [J] 

so the spectral number of photons per second on the detector is 

2

24
LX Y D B

R
P

h cE









   

2

24

LX Y D B

h c R


  [photons/(s-m)] (note that the dot over the P is Newton’s “per unit time”).  

Since the integration time is 
1

INT

D

t DC
f

    [s] where DC  is the “duty cycle” ( DC  = 99% = 

0.99) and Df  is the operating frequency ( Df  = 10 Hz), the number of photons arriving at our 

detector per integration time is 
2

24

L
INT

D

X Y D DC B
P P t

h c f R


 


    [photons/m].  Note that we still 

have a spectral quantity, and photons of different wavelengths get converted into electrons by 

the detector’s quantum efficiency, which we will discuss next. 

 Between the wavelengths of 2.0 and 3.5 micrometers, our HG:Cd:Te photodetector has a 

quantum efficiency that increases linearly ( m b   ) according to a relation that we can 

derive
3
 from the chart:  

0.8 1.45

1.5 1.5
    [electrons/photon] where the first constant (slope) has 

units of electrons/(photon-m) and the second constant (intercept) has units of electrons/photon.  

Evidently the number of electrons generated in one integration time is then the product:  

                                                 
3
 You can read the slope off the chart directly:  y =  = 0.9 – 0.1 = 0.8, and x =  = 3.5 – 2.0 = 1.5; thus 

0.8

1.5

y
m

x





 
  
 

.  Finding the intercept, b, requires plugging in a known point on the line and solving.  For 

example, when (, ) = (2.0, 0.1) we have 0.8
0.1 2.0

1.5
b  , and solving gives us (0.8)(2.0) 1.45

0.1
1.5 1.5

b     . 



2

2

0.8 1.45

4 1.5 1.5

L

D

X Y D DC B
N P

h c f R


 


 

 
   

 
 [electrons/m].  Now if you are sharp-eyed, you will 

notice two peculiar things about this expression.  FIRST, the first  in the formula is in units of 

meters – having come from our calculation of photon energy – while the second  is in units of 

microns – from the quantum efficiency relation.  We will fix this below.  SECOND, we still have 

a spectral quantity.  To derive our final answer, we have to integrate this over the sensor’s 

bandpass:  
BANDPASS

N N d    

 Apparently, we will have to be extra careful of the units in our calculation of the integral.  

We note that the Planck formula, 1

5 2exp 1

c
B

c
T







     

  

, calls for wavelength in units of 

micrometers when we use the values c1 = 3.742×10
8
 [W-m

4
/m

2
] and c2 = 1.438×10

4
 [m-K] for 

the so-called “first and second radiation constants” as given in our text.  It only makes sense, 

therefore, that we should be consistent and use micrometers for all instances of wavelength in 

our calculation.  When we do this, let’s see what happens. 

 Putting everything together, we see that we want to integrate: 

 

 

2

2

2

2

4

4

L

D
BANDPASS

L

D BANDPASS

X Y D DC
N B m b d

h c f R

X Y D DC
B m b d

h c f R





  

  

 

 







 

Since we want to do the integral over wavelength in units of microns, a check on the units
4,5

: 

  

 
   

2

2
2

m m m W μm
μm μm

m 1 m μm m
J s m

s s

                      
   





 

shows that we have some dimensions left over – remember our final answer is just supposed to 

be in “electrons” (per integration period) which is just a number with no units.  Thus to make 

things work out right, we have to stick in a conversion factor, 
610 m

1μm
K



 .  With this factor in 

place, the coefficient of fixed quantities out in front of the integral evaluates to 

2 2 6 2
11

2 34 8 2

(0.0254m)(0.0254m)(0.1016m) (0.99)(10 m/μm) m
2.07 10

4 (4)(6.626 10 J s)(2.998 10 m/s)(10Hz)(2m) W μm

L

D

X Y D DC K

h c f R




  

   
, 

(assuming three significant digits throughout), and the integral apparently has units of 
2

W μm

m


. 

                                                 
4
 The notation has shown here only sticks in the units for those terms in the formula that have them. 

5
 Remember that the “d” also has units of micrometers! 



The integral is done numerically in the companion spreadsheet where we have used simple 

trapezoidal integration to derive its value 5.22.  So, finally, we have our estimate that ~ 

2
11 12

2

m W μm
2.07 10 5.22 1.08 10 electrons

W μm m

   
    

   
 

are generated (per integration time). 

 

 

7-11.  An Experimental Photodetector Test.  
The laboratory set-up in the previous problems 

(7-9 and 7-10) is modified to include a “chopper 

wheel” in front of the blackbody source.  The 

wheel is eight inches in diameter, has two 45 

wide openings, and spins in front of the 

blackbody – alternately covering and exposing it 

to the photodetector.  First calculate the 

photodetector’s output when the blackbody is 

hidden and then when it is revealed.  Determine 

the maximum output of the detector when the wheel spins at rates of 2, 5, 10, and 20 Hz (i.e., 

revolutions per second).  (Recall that the detector integrates at 10 Hz with a 99% duty cycle.) 
 
 

SUGGESTED SOLUTION:  First, we are going to modify our calculations from Problems 7-9 

and 7-10 to compute the rate at which our photodetector is converting incident photons into 

output electrons.  You will understand why later. 

 From Problem 7-9, our photodetector’s output when seeing only the blackbody is ~ 

   
3.5μm2 2

2 2

2.0μm

2
12 13 1

2

4 4

m W μm
2.095 10 5.22 1.09 10 s

W s μm m

BB

BANDPASS

X Y D X Y D K
N B m b d B m b d

h c R h c R
      



   

   
     

    






 

And from Problem 7-10, our photodetector’s output when seeing the background
6
 surrounding 

the blackbody is ~ 

   
3.52 2 2 2

2 2 2 2

2.0

2
13 12 1

2

4 4 4 4

m W μm
1.21 10 0.636 7.69 10 s

W s μm m

m

BG

IMG IMG m
BANDPASS

x XY D x XY D K
N B m b d B m b d

d R hc d R hc



 



 
     



   
        

   

   
     

    






 

Combining these results, we have that our photodetector’s output when seeing the blackbody 

source surrounded by its background is 1.8610
13

 electrons per second. 

                                                 
6
 We are assuming the chopper wheel is at 300 K, the same temperature as the background in Problem 7-10, so when 

the photodetector sees partly laboratory space and partly chopper wheel surface, it is all the same. 



 Second, we are going to add to these results a third calculation for our photodetector’s 

output when the blackbody source is concealed by the chopper wheel.  We will assume then that 

it sees only a 300 K background (chopper wheel plus whatever other apparatus may be behind 

it).  The only difference from the previous problems is the solid angle filled with extended 

radiant background is now 
2

24
BG

IMG

x

d


  .  Using this FOV, the student can easily verify that our 

photodetector’s output at these times is ~ 

 
3.5μm2 2

2

2.0μm

2
13 1

2

16

m W μm
1.42 10 0.636 s

W s μm m

BG

IMG

x D K
N B m b d

hc d



  

 

 

   
     

    


 

 Third, we will address the issue of the chopper wheel.  The sketch below shows the 

progression of one its slots across the blackbody through half a revolution.  As you see, the 

photodetector sees at least some of the blackbody for (143° – 82°)/180° ≈ 33.9% of the time 

while it is fully uncovered for only about (127° – 98°)/180° ≈ 16.1% of a rotation.  The transition 

from covered to uncovered is, technically, a convolution of the two shapes (slot in wheel and 

blackbody surface) passing over one another, but we will just approximate it with a linear rise 

and fall. 

 

 Since our photodetector’s output is known when it is seeing the blackbody – and not – we 

can plot its output (electrons per second) as a function of time when the chopper wheel is 

rotating at speeds of 2, 5, 10, and 20 Hz, thusly ~ 



 

 BUT WAIT, there’s more because the photodetector integrates its input … 

 With our photodetector operating in an integrating-sampling mode, its output is ~ 

 ( ) electronsN N t dt   

which is usually interpreted as being the area under the curve.  For the remainder of this 

problem, let us assume that the rotation of the chopper wheel is synched to the integration cycle 

of our photodetector, such that angle zero in the figure above corresponds to the beginning of an 

integration interval.  (This need not necessarily be so, and it is a very important issue which 

should be explored in the interpretation of data from non-literal OPIR sensors in Chapters 13 and 

14.)  Furthermore, with a duty cycle of 99%, we will ignore the readout time. 

 For the chopper wheel rotating at 2 Hz, the output of our photodetector (in electrons per 

integration time) is as shown below.  Because of our simplifying assumptions, the calculation of 

the temporal integral is just reduced to the areas of rectangles and trapezoids.  If we let the 

photodetector’s output be reported at the end of each of its samples, and fancifully “connect the 

dots,” we see that its output only mildly resembles the input.  Is this sufficient for us to be able to 

detect the presence of the blackbody in the photodetector’s FOV?  This is a matter for advanced 

study in signal processing, but we could imagine that – presented with these data – we could 

probably say that there is something there besides background, but, obviously, we are unable to 

identify it.  We have nibbled at the edge of non-literal signature identification. 



 

 

 When the rotation speed on the chopper wheel increases, the situation becomes as shown 

in the next figure.  The photodetector’s temporal integration is no longer able to discern that 

there is any target present in its FOV at all!  Again, we have stepped into an area where we need 

to rethink how we want to collect and process these data. 

 

 
 

 


