
CHAPTER 14 ~ SUGGESTED SOLUTIONS (ODD) 
 

 

14-1.  Bad Pixel Correction  The portion of a sensor’s FPA shown below shows the raw counts 

(12-bit) for one frame of data, and contains output from a bright target against a dark (nighttime) 

background, noise, and other artifacts.  There are two bad pixels noted:  H3 and F6.  Apply a 

median filter to correct these inappropriate values. 

 
A B C D E F G H I J 

1 104 95 103 106 97 98 104 100 91 107 

2 106 109 99 108 111 121 104 96 91 101 

3 105 96 115 261 610 703 439 0 101 107 

4 100 90 229 927 1908 2170 1450 504 123 93 

5 105 94 401 1616 3113 3533 2419 904 161 97 

6 91 105 398 1563 3033 4095 2356 869 163 109 

7 105 99 207 847 1757 2017 1324 443 118 91 

8 94 93 112 222 506 605 378 130 90 97 

9 97 109 109 93 120 123 98 104 91 104 

10 101 100 98 96 107 93 107 92 109 98 

 

SUGGESTED SOLUTION:  The median filter picks out the middle value of a list arranged in 

numerical order.  Computer programming-wise, it is said to be faster to use integer arithmetic, so 

we want an odd number of values to sort.  This is easily accomplished by selecting the bad pixel, 

itself, and its eight nearest neighbors.  (The wisdom of including the bad pixels is often 

questioned, but see the following remarks.)  For cells H3 (apparently a dead pixel) and F6 (a 

“happy” pixel), respectively ~ 
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 Thus we see that appropriate values to replace the two bad pixels are 104 and 2419 

counts, respectively.  Are these values the right ones?  Don’t know!  But we can confidently say 

that they are closer to being correct than the bad values.  We could say the same thing about  any 

method we might use to replace the inappropriate values; it’s just that the median filter method is 

simple to understand, easy to program, and reasonably fast. 

 

 

14-3.  Estimating Target Energy.  The point target collected in Problem 14-1, and corrected in 

Problem 14-2 for dark current, was most likely a “superbolt” lightening flash lasting about 0.5 s.  

The data frame was thus only one of several.  The advanced metsat sensor, in geosynchronous 

orbit, watched the event through 30 cm diameter optics in the 2.1 – 2.3 m window band.  The 

sensor’s optical throughput was roughly 50% to a CMOS FPA with a 40% efficiency; the 

quantum wells per pixel were designed to be about 80,000 electrons deep.  From this 

information, estimate the lightening bolt’s radiant energy output (in band). 

  

SUGGESTED SOLUTION:  This calls for our dusting off the end-to-end equation from Chapter 

10 and applying one new wrinkle, namely summing the counts on all the pixels that represent 

energy from the target: 
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This equation we approximate in the usual way ~ 
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Since we are interested in comparing energy collected to the energy of a known source, examine 

the quantity INTI t   , and apply the definitions of power and what we mean by a spectral 

radiometric quantity: 
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That is, our approximate solution reduces to ~ 
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 Now for a little hand-waving.  We believe that a CMOS FPA essentially uses 100% of its 

surface area for capturing photons, so 1F  for all pixels.  BUT, we will also suppose the 

sensor’s optics are nearly diffraction limited, resulting in only 84% of the target’s image energy 

being within the pixels we have found.  Thus our sensor equation can be solved as ~ 
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This is for the one frame of collected data, of course, and is only for the bandpass of the sensor.  

(Another little piece of hand-waving is the last term ~ it can be either the conversion of each 

pixel’s digital output to electrons and then sum, or the other way around:  sum, then convert.) 

 To start filling in the numbers, let’s 

suppose that the distance from sensor to target 

is on the order of 40,000 km – something 

greater than geosynchronous altitude above the 

equator, but less than looking at the North Pole.  

The atmospheric transmission in the 2.1 – 2.3 

m band is good, and averages to about 0.92 

(see plot at right).  The collecting aperture is 
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 For the sum of the counts on the pixels, we refer back to Problem 14-2 where we 

removed dark current from the collection (no background was assumed to be present in the 

nighttime scene).  We found 40 or 41 pixels with what we believed to be target energy after also 

accounting for random noise.  There is still the matter of the two pesky bad pixels, but applying 

the same method as Problem 14-1, we replace them with estimates using the median filter, as 

shown here, noting the “dead” pixel has no apparent target energy on it ~ 

 
A B C E D F G H I J 

1 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 19 0 0 0 0 

3 0 0 0 166 502 598 347 0 0 0 

4 0 0 135 825 1816 2068 1360 398 29 0 

5 0 0 304 1525 3018 3436 2325 808 58 0 

6 0 0 292 1468 2937 2325 2248 761 61 0 

7 0 0 113 744 1665 1915 1225 353 0 0 

8 0 0 20 113 412 503 272 40 0 0 

9 0 0 0 0 18 23 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 0 

The sum of counts on target pixels is therefore 37,245PIX

PIXELS

N  .  We recall from the previous 

problem, however, that the noise component of each pixel – after subtraction of the dark frame – 

is about  8.5 counts per pixel, up to at most  15 counts.  This being the case, when we add 

together the outputs of 40 pixels, we expect that our summed result may have an error (noise) of 

approximately 

40 8.5 54 counts.TGT       

 Furthermore, since the output of the focal plane is reported to 12-bit depth (2
12

 = 4096), 

evident from the “happy” pixel, and the pixel well depth is given to be 80,000 electrons, the 

“digital-to-analog” reverse conversion is therefore 
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error” of approximately 19 or 20 electrons (one bit) per pixel.  Assuming a random distribution 

of counts in individual pixels (i.e., number of electrons high or low in the top-most bin), taken 

together the total of the summed pixel output may have an expected quantization error of 

40 19.5 123 electrons 6 counts.N         

Thus we see that the uncertainty in our Pixel Sum is dominated by the focal plane noise more 

than the quantization error, although it amounts to only about 
54

0.15%
37,245

  because we have 

a very strong target signal in this Problem.  (We comment here that the uncertainty introduced by 

fixing the bad pixels may, in fact, be the largest source of error, although we have no way of 

knowing that.) 

 To complete the calculation , we now plug in the numbers: 
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14-5.  Principal Component Analysis
1
  Spreadsheet file Chapter 14 ~ Suggested Problems 

DATA gives ten seconds of data collected on two pixels, called xi and yi, looking at a constant 

background.  (i is an index.)  The variation in the data is probably due to sensor jitter and some 

noise.  Apply Principal Components Analysis to find the nominal background. 

 

SUGGESTED SOLUTION:  The computational method for calculating Principal Components 

(PCs) is not given in the text, so the following is a step-by-step procedure for two-dimensional 

data.  Since this is a two-dimensional problem, we will find two PCs.  The student will find 

computerized techniques for handling greater dimensional data in other books on multivariate 

statistics, as well as numerous web sites. 

1.  Find the average, or mean, of variables (pixel values) xi and yi.  Call them X and Y (at 

the bottoms of their respective columns on the Suggested Solutions (ODD) 

worksheet). 

2.  Calculate the variance (difference) between each xi and X, and between each yi and Y.  

(See Columns E and F on the worksheet.) 

3.  Calculate the squares of the variances, (xi – X)
2
 and (yi – Y)

2
, and also the covariance 

(xi – X)(yi – Y).  (See Columns H, I, and J on the worksheet.) 

4.  Find the sums of (xi – X)
2
, (yi – Y)

2
, and (xi – X)(yi – Y) (at the bottoms of their 

respective columns). 

5.  Note that this data set has n = 101 entries (for times t = 0.0(0.1)10.0), so divide the 

three sums by n – 1 = 100 (below the sums). 

                                                 
1
  Unfortunately the calculation of principal components for an n × n focal plane – or section thereof – is too 

difficult a computational problem to assign as homework.  This problem considers only a two pixel array to 

demonstrate the method.  The student is encouraged to dig into any modern book on multivariate statistics to learn 

the full implementation and to explore the computer algorithms necessary to make it tractable. 



 We have now found the covariance coefficients among the variables:  x with itself, y with 

itself, and x with y.  (Note that the covariance of x with y, cxy, is the same as the covariance of y 

with x, cyx, because the multiplication is commutative.)  Assuming the student is familiar with 

matrix, or linear, algebra, these may be expressed in a covariance matrix ~ 
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6.  Find the characteristic values (eigenvalues) of the covariance matrix; that is, find 

values of  such that CX X , where X  is a general two-pixel vector 
 

  
 

X
x

y
: 

  0
c c

c c






  
       

C I X
xx xy

yx yy

x

y
. 

To solve this equation with anything other than the trivial solution x = y =0, the 

coefficient matrix must be “singular”.  That is, its determinant (called the 

“characteristic equation”) must be equal to zero: 
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Using the standard quadratic formula, the solutions (calculated in the worksheet) 

are 
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 These characteristic values tell us the relative weights, or importance, of the PCs.  

Obviously, one of the two components for this problem dominates the other; it is the principal 

component of the data set, giving the most significant relationship between the data dimensions 

(the two pixels). 

7.  Find the characteristic vectors (E for eigenvectors) for the characteristic values: 

For 1 65.667  : 

1 1 1

1 1 1

33.093 32.36532.574 65.667 32.365 0

32.365 31.65432.365 34.013 65.667 0
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These two equations are, in fact, the same (they are not linearly independent), so 

there is no unique solution to them.  The best we can do is 

1 1

33.093

32.365
y x . 



The choice of x1 is thus arbitrary, and a reasonable choice is x1 = 1.  It is also 

common to choose values such that 2 2 1 x y , i.e., it is a unit vector.  Thus ~ 
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Similarly for 2 0.920  : 
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 Having found the characteristic vectors, we illustrate them at 

right, plotted atop the data set.  We clearly see that our original data set 

has the most variability along the E1 direction (red), while there is very 

little variation in the E2 direction (green).  Of course, we may have 

surmised this already from the fact that 1 271.4  .  The impact of this 

is that our data set can be principally represented by reducing it to only 

the one dimension.  Since the other dimensional variation is small, 

leaving it out will not represent much loss of information. 

8.  Form the transformation matrix that will take you from the original data set to a new 

one composed of the PCs.  The transformation matrix is composed of the 

characteristic vectors, arranged in order of importance in columns from left to 

right: 

If you want to retain all of the variability in the data, then for this two-

dimensional problem, the transformation matrix is 
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But if you want to reduce the data to one dimension, eliminating the second, the 

transformation matrix is 
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9.  Take the transpose of the transformation matrix, which is an arrangement of the 

characteristic vectors in horizontal rows instead of vertical columns: 
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10.  Finally, calculate your data set transformed into its PCs by [matrix] multiplying
2
 

your transposed transformation matrix by the original data vectors (represented as 

column vectors): 

T

PC X T X . 

For example, if we want to retain all of the information and keep the data set two-

dimensional, the first data point, 
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where the superscript “(2)” reminds us it is the two-PC transformed data point. 

Continuing with the example, the first data point transformed into ONE PC, 

which is the lion’s share of information, is 

(1)

(1) 1
0.691 0.707 15.138 20.368

0 0 14.013 00
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x
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 Calculation of the two-dimensional and one-dimensional PCs for this problem’s data set 

are in the worksheet, columns O and P, and column R, respectively.  (Note also the values shown 

in column S, which will be discussed below.) 

 

 Our two-dimensional PCs are plotted at 

left, where we show them to the same scale on the 

two axes.  We note that our data have roughly the 

same appearance as our original, except for being 

rotated to the new axes, and the first PC shows the 

majority of the variation in the data, ostensibly 

65.667
98.6%

65.667 0.920



 of it, while the second 

PC is the other 1.4%.  This is clear justification 

that we could neglect the second PC and just 

choose to represent our data set with only a single 

PC. 

 

 

                                                 
2
 Recall when multiplying matrices, the number of columns of the first matrix must be the same as the number of 

rows of the second matrix.  Here, for example, the first matrix is 2 × 2, and the second – a column vector – is 2 × 1.  

The result has the number of rows as the first matrix and the number of columns of the second.  2 × 1 in this case. 



 Before we show the one-dimensional PC, 

the student has the right to ask “what has become 

of the other dimension?”  Since we have reduced 

the dimensionality of our data from two to one, 

apparently, all yi(1) =0 (shown in column S in the 

spreadsheet).  Accordingly, we can now show a 

plot of the one-dimensional PC at right.  Here we 

see all the variation in the collected data in a 

single dimension, but we understand that we have 

lost, at most about 1.4% of the information we 

may have worked so hard to collect. 

 OK, so now are we done with this demonstration of PCs problem?  Not quite … we now 

need to go back to “what are the values we’re supposed to use on the pixels?”  That is, since we 

have two real pixels, we need real numbers to put on them.  To do this step, we return to our PC 

transformation in Step 10, above, and “undo” it by left-multiplying by the inverse of the 

transpose of the transformation matrix: 

 
1

T T T 1* ( ) PC PC


  X T T X T X TX . 

where we are using the notation X* to indicate recovered data from PC-reduced data.  The last 

step in this equation comes from the fact that our transformation matrix was formed from 

orthogonal characteristic vectors (eigenvectors), thus the inverse of the transpose (Step 9) is the 

original transformation matrix itself (Step 8).  For example, the first data point now becomes 

0.691 0 20.368 14.074
*

0.707 0 0 14.400

    
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X . 

The inverse transformation (back to pixel data) has been done in columns U and V of the 

spreadsheet, and now we can see what it looks like (and we’re done with this Problem): 

 
 

 



 

 

 

14-7.  Tracking a Target  On the DATA worksheet for this problem, you will find thirteen partial 

frames of data taken by a large area surveillance sensor of a moving target.  The frames have 

been corrected for bad pixels, bias and gradients, and noise, and the background has been 

suppressed.  The frames were taken one second apart, and each pixel has a GSD of 

approximately 800  800 m.  Assume the orientation of the frames is aligned with the Earth’s 

geographic coordinates, North up.  Estimate the speed and heading of the target.  Are these really 

the target’s true velocity and heading?  What other information might you need to know? 

 

SUGGESTED SOLUTION:  The companion Suggested Solutions (ODD) spreadsheet gives the 

details of the centroid calculations for Frames 2 – 13.  (We can tell from what we expect the 

approximate shape of the target’s PSF to be that it is only partially showing on the edge of the 

focal plane in Frame 1 – which is Murphy’s Law.)  The counts (i.e., energies collected) in each 

row/column are summed, then multiplied (weighted) by their respective row/column number.  

The sum of the sums of the counts is then divided into the sum of the weighted products.  The 

results of the computation are summarized in this table, including the sum of target counts found 

in each frame (proportional to the energy collected within the target’s PSF).  The last column 

gives the distance (in pixels) between successive centroids (to be discussed later) ~ 

 
--- CENTROID --- 

  FRAME ROW COL COUNTS s 

1 UNK UNK UNK N/A 

2 17.65 6.15 48380 ----- 

3 16.65 6.95 50868 1.28 

4 14.85 7.95 54017 2.06 

5 14.05 8.95 50955 2.79 

6 12.05 10.15 49618 2.33 

7 11.05 11.35 55277 1.56 

8 8.85 12.35 55275 2.42 

9 7.65 13.35 64068 1.56 

10 5.65 14.15 57157 2.15 

11 4.85 15.15 57790 1.28 

12 3.05 15.95 65327 1.97 

13 2.05 17.15 65954 1.56 



 When we plot our results, we can see the 

path the target’s centroid has taken across our 

FPA.  It appears somewhat jerky probably 

because of some jitter in the sensor’s pointing 

control.  Assuming the apparent path should be a 

straight line, and to smooth it out, we can estimate 

the motion using MSExcel’s Add Trendline 

feature, giving us a best-fit linear equation.  (The 

equation’s notation is “x” = column and “y” = 

row.  Remember to check the equation to 

ascertain it actually approximates your data!  You 

might need more decimal places.) 

 The apparent speed of a target moving 

across a focal plane was discussed at some length 

in Problems 13-7 through 13-10 where we did not 

see the computed centroids as given here.  Here 

we assume that speed across the focal plane (in 

pixels per second) is directly proportional to apparent ground speed, since we have that one pixel 

represents a GSD of 800 meters. 

 A preliminary calculation of    
2 2

row columns     , shown in the last column of 

the table, suggests that this target is neither accelerating nor decelerating.  At least there is 

enough irregular change in the values from frame to frame that no clear trend is noted.  We 

therefore will make the assumption the apparent speed (along a straight path) is supposed to be 

constant, and may be calculated, in engineering units, as an average speed: 

pixels 800 m m

time pixel s
v

   
       

. 

We learned from the previous problems (Chapter 13) the minimum error in this estimate will be -

1.4557when we take the end-points to be as far apart as possible, meaning values from Frame 2 

and Frame 13.  Taking the centroids for those frames, and noting the time difference is 11 

seconds, we get ~ 

   
2 2

1
2.05 17.65 17.15 6.15 800 m

1388 m s
11s pixel

v 
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 This being an estimate, one can always ask “Is there a 

better answer?”  The answer is “maybe” by considering this:  

We have reasonable assurance that the trendline is close to 

being an accurate depiction of the actual (apparent) track, but 

the end-points we just used do not lie exactly on the trendline.  

Can we make use of the trendline somehow? 

 Looking at the figure at left, which is a magnification 

of the trendline passing near the Frame 2 centroid, we see that 

we could use the trendline equation in two different ways.  If 



we believe the column part of Frame 2’s centroid is correct, then the trendline gives us an 

adjusted row value at A: 

 2 1.4557 6.15 26.801 17.85row     . 

But on the other hand, if we believe the row part of Frame 2’s centroid is correct, then the 

trendline gives us an adjusted column value at B: 

2

17.65 26.801
6.29

1.4557
column


 


. 

 However, a better solution is to apply the logic of the trendline, namely that it is a best-fit 

to the data constructed in a statistical least-squares fashion.  That is, the trendline passes next to 

each data point so as to minimize the sum of the variances of its closest approach to each point.  

This is depicted as C in the figure, which is seen to be closer than A or B.  To find C, we 

calculate the equation of a line passing through the data point perpendicular to the trendline, then 

solve the two equations (new equation and trendline equation) simultaneously.  The details of 

this are left as an exercise for the student, and the results for Frame 2 and Frame 13 adjusted 

centroids are 

 
--- ADJUSTED --- 

Frame ROW COL 

2 17.71 6.24 

13 1.98 17.05 

Now we can make a better (our best?) estimate of the target’s apparent speed ~ 
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 WELL!  Our estimate did not improve for this data set, but the method is recommended 

for “best” results. 

 Finally, we need to compute the target’s apparent heading (direction of travel).  We could 

make sure the plot above is drawn to scale and measure it with a protractor, or we could suppose 

the trendline equation is correct.  In the latter case, the leading coefficient, the slope, is the 

tangent of the angle the line makes with the x-axis.  Inspection of the data makes sure we get the 

direction right (the target appears to be moving southeast, if we assume the rows and columns 

are aligned with Earth’s longitude and latitude, respectively).  Thus: 

 1tan 1.4557 55.5      . 

Heading, however, is usually referenced to North, we need to add 90° to get ~ 

TH =90° + 55.5° ≈ 145.5°  (clockwise from North). 

COMMENT:  All of the above should be approximately correct if the target is moving on the 

ground, or at least at a constant altitude.  (Note the target’s speed is about Mach 4.0 at sea level.)  

The increase in target energy noted in our centroid calculations may indicate that it is climbing 

through the atmosphere ~ the atmospheric attenuation is decreasing.  This is indeterminate from 

these data, so we would need some corroborating evidence to confirm this. 



 

 

 

 

 


