
SUGGESTED SOLUTIONS (ODD) 

CHAPTER 9 

NOTE:  Use three-digit precision for all calculations unless otherwise stated or implied. 

 

9-1.  Dye Filters.  A major manufacturer of optical components can supply “subtractive” dye 

filters in the visible bandpass.  The plot below shows the transmission of the Cyan and Yellow 

filters.  A data sheet for the two filters is given in the companion spreadsheet.  Calculate and plot 

the resultant effective filter, as in Figure 9-2 of the text, when the two are combined.  What is the 

maximum transmission of the combination filter, and what are the short- and long-wavelength 

cutoffs at the half-maximum, 10%, and 1% points? 

 
 

SUGGESTED SOLUTION:  The companion solutions spreadsheet calculates the product of the 

two filter functions.  By inspection, the maximum transmission is 86.17% at a wavelength of 

approximately 569.7 nm.  The following table gives the short- and long-wavelength cutoffs for 

the three conditions specified, as well as the filter’s bandpass width and center.  The half-

maximum width (often called Full-Width-at-Half-Maximum, FWHM) refers to one-half of the 

filter’s actual maximum transmission, while 10% and 1% cutoffs refer to the actual 10% and 1% 

transmission limits, respectively.  Note that there is probably considerable uncertainty as to 

exactly where the 1% points are, particularly on the short-wavelength side.  [All values in the 

table are in nanometers.] 

 Short- 
wavelength 

cutoff 

Filter 

width 

Filter 
center 

wavelength 

Long- 
wavelength 

cutoff 

FWHM 522.0 70.6 557.3 592.7 

10% 510.1 90.8 555.5 600.9 

1% 406.4 204.6 508.7 611.0 

 

(This combination filter is very close to what the 

manufacturer would provide as a subtractive 

Magenta filter.) 

  



9-3.  Algebraically Adding Two Light Waves.  Show that the two light waves in Problem 2 

algebraically added together are 

7
2.83sin 93.5

2

t
E

 
   

 
 

 

SUGGESTED SOLUTION:  The answer is given in the text as Equation 9-3, but to show that it 

is correct, add the two waves together and postulate the answer to be a single sine wave with an 

unknown amplitude, A, and phase,  : 

     1 1 2 2sin 2 sin 2 sin 2A ft A ft A ft           

Now use the trig identity  1 2 1 2 1 2sin sin cos cos sin         to expand the waves on both 

the left and the right ~ 
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Next, regroup the terms in a more suggestive manner: 
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For this equation to be true, the coefficients of  sin 2 ft  and  cos 2 t  on the left and right 

sides (terms in square brackets) must be equal; so write them out ~ 
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 (9-3-1) 

Note this has turned one equation into two, which is the prescription necessary for solving for the 

two unknowns A and .  To solve for A, square these two resultant equations, 
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add them together, 
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and use the Pythagorean trig identity 
2 2sin cos 1   : 

 2 2 2

1 1 2 1 2 1 2 22 cos cos sin sin .A A A A A        

Finally, use the trig identity  1 2 1 2 1 2cos cos sin sin cos :         
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To solve for the phase angle,  , the two equations (9-3-1) may be simply divided, and use the 

fundamental trig identity 
sin
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cos


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 This derivation fills in the gaps for Equation 9-3 in the text, and now we can calculate ~ 
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which is quite straightforward, and ~ 
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which is not straightforward.  The difficulty with applying the formula for phase angle is that 

calculators and computers always return the Principal Value of inverse trigonometric functions.  

This is the blue line in the graph of the tangent, below, where the apparent phase angle is marked 

with a red triangle.  But with the tangent – and all periodic functions – there is the possibility that 

a value in another cycle of the function could be the correct one (the other red triangles).  In the 

case of the tangent, a peek at the plot given in Problem 2 suggests that we should choose the 

value on the green branch near 90°. 

 

 Therefore, moving to the correct branch of the tangent, 86.5 180 93.5       , we 

have ~ 
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but care must be taken when computing this resultant wave in making sure the argument of the 

sine function is either in radians or degrees (but not mixed). 

  

-25

-20

-15

-10

-5

0

5

10

15

20

25

-270 -180 -90 0 90 180 270



9-5.  Reflection and Transmission Criteria.  Referring to the 

simplified thin film application, Figure 9-6 (reproduced at right 

and slightly modified with the addition of point G), derive the 

optical path length difference Equations 9-8 and 9-11 for 

reflection and transmission, respectively: 

 2 cos
2

nd


    (9-8) 

and 2 cosnd    (9-11) 

[HINT:  You will need a trig identity or two, and the red arrow 

reminds you where there is a 180° phase change on reflection.] 

 

SUGGESTED SOLUTION:  For reflection, E is abeam C, and we need the difference between 

paths A-to-E and A-to-B-to-C.  So first look at right triangle A-E-C, and note that angle A-C-E 

is the same as the incident angle:  inc ACE .  Then, 

 sin 2 sin 2 sininc n n    AE AC AG AG   

where we have made use of Snell’s Law (assuming 1airn  ), and have introduced the distance  

A-to-G which also appears in right triangle A-G-B.  Now in right triangle A-G-B, we have 

dBG , and thus tand AG .  Substituting, 

 
2sin

2 tan sin 2
cos

n d nd


 


 AE  

Since 1airn  , this physical distance is the same as the optical path distance. 

 Now turning our attention to path A-B-C, which equals twice path A-B, we also have in 

right triangle A-G-B that 
cos cos

d

 
 

BG
AB .  The physical path is thus
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which is the measure of the path length in wavelengths reduced by the index of refraction (n) in 

the thin film. 

 The difference between these optical path lengths is partly what we are seeking: 
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In addition to this term, electromagnetic boundary conditions impose the stipulations that the 

tangential (to the interface between air and material) component of the electric field but the 

normal component of what is called the displacement field (a relative of the electric field) must 

be continuous from one side to the other.  (See advanced texts in electromagnetic theory.)  When 

the light beam passes from a medium of lower to a medium of higher index of refraction, these 



conditions cause the reflected portion to flip over – to have an additional 180° (or  radians) 

phase change, which is the same as a one-half wavelength shift in the optical path length.
1
  Thus, 
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 Now that the reader has seen how the difference in optical path lengths is derived for 

reflection, it will be left as an exercise within this solution for the reader to perform the same 

manipulations for transmission.  It goes the same, but without the added half-twist at the end. 

 

9-7.  More Reflection and Transmission Criteria.  Again refer to a 

modified version of Figure 9-6  (points G and H have been added), 

but this time let the top, middle, and bottom materials have indices 

of refraction 1 2 3, , and n n n  such that 1 2 3n n n  , like a thin “anti-

reflection” coating on the lens of your eyeglasses.  (Note that light 

rays now bend toward the normal at both interfaces according to 

Snell’s Law:  inc    .)  Find the optical path length differences 

(like Equations 9-8 and 9-11) for Rays 1 and 3 and for Rays 2 and 

4, and deduce the criteria for reflection and transmission from/ 

through the thin film.  [HINT:  Red arrows remind you where the 

light waves have a 180° phase shift on reflection (only).] 

 

SUGGESTED SOLUTION:  First, we consider Ray 3 at C where it is abeam Ray 1 at E.  The 

optical path length (measured in wavelengths) difference is 
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where “olp(-)” means optical path length and the overbar notation means physical path length.  

As in Problem 5, looking at right triangles A-G-B and A-E-C we have ~ 

   and   2 sin 2 tan sin
cos

inc inc

d
d  


  AB AE AG  

Substituting these expressions, doing a little rearrangement, using Snell’s Law, and pulling out a 

couple of trig identities gives us the difference we are looking for: 

                                                 
1
 Is the wave shifted 180° (or one-half wavelength) forward or backward?  That is, should we use a plus or a minus 

sign?  It doesn’t make any difference because the wave is periodic, so you can’t tell the difference physically.  

Mathematically, chose whichever sign makes the solution most convenient.  In this problem, we’ll chose to add a 

half wavelength, but in a later problem, we’ll see that it makes more sense to subtract a half wavelength. 
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 From this relation, we reason that constructive interference (reflection) will occur when 

the opl is an integer multiple of the wavelength, but we will have destructive interference (no 

reflection) when the opl is a half-integer multiple.  Summarizing: 
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0.5 for destructive interference (no reflection)
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where m is a positive integer, 1, 2, 3,m  . 

 Next, considering Ray 4 at D where it is abeam Ray 2 at F, the opl by the same math as 

above is: 
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(We have chosen the 180° phase shift to be represented by 
2


  for reasons that will become 

apparent later.  See Footnote 1 for Problem 5.) 

 From this second relation, we also see that constructive interference (transmission) will 

occur when the opl is an integer multiple of the wavelength, but destructive interference (no 

transmission) will happen when the opl is a half-integer multiple.  Summarizing: 
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for constructive interference (transmission)
2 cos

0.5 for destructive interference (no transmission).2
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 At first glance, the two opl conditions seem to be opposed to one another.  However, we 

can reconcile them as follows:  for reflection from the thin film, we want the top surface opl to 

constructively interfere upward, 



22 cosn d m   C-E , 

but we want the bottom surface opl to destructively interfere downward (i.e., NOT transmit 

through the interface), which is
2
 

 22 cos 0.5
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 -OR- 22 cosn d m   

THESE TWO CONDTIONS ARE THE SAME:  THERE IS INDEED CONSISTENCY 

BETWEEN THEM!  Similarly for transmission through the thin film.  We can therefore 

summarize: 
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2
 See here why we chose to subtract a half-wavelength instead of add it.  Remember it makes no difference 

physically, but it makes the math work out nicer. 



9-9.  Antiscratch Coatings.  Camera lenses and eyeglasses often have a hard layer of magnesium 

fluoride (MgF2, n = 1.38) on them for protection.  If a typical layer is about 10 m thick, and the 

glass has a nominal refractive index of 1.60, are there any wavelengths in the visible spectrum 

that are specifically intensified (i.e., transmission enhanced)? 

 

SUGGESTED SOLUTION:  As shown in Problem 9, when a thin film’s substrate has a higher 

index of refraction, the criterion for transmission (constructive interference) is 
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For most vision and photography, we suppose light is mostly normally incident, so cos 1   

again.  This leaves us with ~ 

   2 1.38 10 μm2 27.6 μm

0.5 0.5 0.5

nd

m m m
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  
  

 Examining this expression, we find that we don’t get to visible wavelengths (400 – 700 

m) until around m = 40 or so.  Above that, yes, some wavelengths would constructively 

interfere within the film and be enhanced.  That’s assuming the light has another property not 

previously addressed in this chapter:  coherence.  Coherence is the ability of light waves to 

remain in phase with one another (and hence interfere) over long distances.  The requirements 

for coherent light are perfectly planar wavefronts and exact monochromaticity.  Ordinary light 

from the sun and most artificial sources does not generally meet these stringent tests.  (Only 

lasers come close, and then not over excessively long distances.)  Thus, we can expect there will 

be NO wavelengths that are specifically intensified in passing through the protective coatings on 

our eyeglasses or camera lenses (as we confirm from daily experience). 

 

 

9-11.  Interference Filter.  An interference filter using a thin film of material with index of 

refraction 1.60Fn   is designed to have a transmission peak 5.00 nmMIN   wide about a 

central wavelength
3
 of 632.8 nm   when used at normal incidence, and a (partially silvered) 

reflectance of 0.80R   at the material-air interface.  How thick must the film be? 

 

SUGGESTED SOLUTION:  First, from the width of the transmission peak, we need to perform 

the following check ~ 
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That is, since we are dealing with a transmission peak, the order, m, is supposed to be an integer, 

which we have just confirmed.  Evidently we are supposed to use m = 9 for this problem. 

                                                 
3
 He:Ne laser wavelength. 



 Proceeding, for constructive interference in the forward (transmission) direction we note 

that 0    and calculate ~ 
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