
SUGGESTED SOLUTIONS (ODD) 

CHAPTER 6  

NOTE:  Use three-digit precision for all calculations unless otherwise stated or implied. 

 

6-1.  Lens and Mirror Equations.  Show by algebraic manipulation that Gauss’ formula for 

locating an image with a lens or mirror, 
1 1 1

OBJ IMGd d f
  , is the same as Newton’s formula, 

2( )( )OBJ IMGd f d f f   . 

 

SUGGESTED SOLUTION:  Starting with Gauss’ formula, multiply through by OBJ IMGd d f  and 

cancel the common variables from numerator and denominator: 

OBJ IMG OBJ IMG OBJ IMG
IMG OBJ OBJ IMG

OBJ IMG

d d f d d f d d f
d f d f d d

d d f
     . 

Rearrange into a more suggestive form: 

0OBJ IMG OBJ IMGd d d f d f    

The suggestion here is that this is starting to look like the high school algebra “FOIL” trick for 

multiplying two binomials – First-Outside-Inside-Last – which can be used in reverse for 

factoring.  All that is missing is the “Last” term, which would be 
2f .  This is easily added to 

both sides of the equation, and the suggested factorization yields Newton’s form: 

  
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2 QED.
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6-3.  Calculating a Lens’ Focal Length.  A small object 5 cm in front of a lens forms a real 

image 50 cm behind the lens.  What is the lens’ focal length?  If instead the image were a virtual 

one 50 cm in front of the lens, then what would be the lens’ focal length? 

 

SUGGESTED SOLUTION:  Solving the Gauss’ formula for focal length: 

OBJ IMG

OBJ IMG

d d
f

d d



 

Putting in the numbers for the real image (image distance positive) ~ 

2(5cm)(50cm) 250cm
4.55cm

5cm 50cm 55cm
f   


, 

~ and for the virtual image (image distance negative) ~ 



2(5cm)( 50cm) 250cm
5.56cm

5cm 50cm 45cm
f

 
  

 
 

Surprise:  note that in both cases, the lens is a positive, converging lens.  The difference is that 

the object is outside and inside of the lens’ focal length, respectively.  (The first case is on the 

real image branch of the plot in Problem 6-2 solutions, and the second case is on the virtual 

image branch.) 

 

 

6-5.  Focal Length of Two Lenses.  Consider two thin lenses, each with focal length f = 100 cm.  

What is their combined effective focal length if they are (a) touching (i.e., distance between them 

along the optical axis  0), or separated by (b) 100 cm, (c) 200 cm, or (d) 400 cm?  [Assume 

light is entering from “infinity.”] 

 

SUGGESTED SOLUTION:  Use the same general notation scheme as in the last problem (6-4), 

as shown in the figure ~ 

 

 (a)  For the first part of the problem, let 1 1 2, , and 0OBd f f f D    , and apply the 

Gauss formula: 
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Then do it a second time: 
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Now assume 
3 1 3 2 3, , and

2
OB OB IM IM eff

f
d d d d f f       and use the formula for a third 

time: 

3

1

OBd
3 2

3 3

1 1 1

2
eff IM IM

IM eff

f
f d d

d f f
        



Numerically, then, when the two equal lenses are touching, their combined focal length
1
 is 

100 cm
50 cm

2
efff   . 

 For (b) we still have 1IMd f  but since 

D f  we have 2 0OBd f f   .  This makes 

nonsense out of either Newton’s or Gauss’ 

formulas, because 2 0IMd   as well.  We 

conclude therefore there is NO SOLUTION 

for this case (see figure at right). 

 Part (c) is also a little weird.  We still have 1OBd    and 1IMd f , but this time 

2 2OBd D f f f f     .  This results in 
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Thus, Gauss’ or Newton’s formula tells us that 

efff   , which is again nonsense.  (This would be a lens with no curvature to its surfaces; in 

other words, just a flat plate of glass.)  The picture shows the physical result is that a parallel 

beam of light is simply inverted.  (This is not completely impractical.  There may be instances 

when it is desired to erect an image inverted by other optical elements.) 

 At last, Part (d) gives a reasonable 

answer.  With 2 1 4 3OB IMd D d f f f     , 
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Finally, the effective focal length of this lens 

pair combination is 

3 3
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1
 This could have been predicted in the following way.  The “power” of a lens is defined as 

1
[diopters]

(in meters)
P

f
 , and when two lenses are touching their combined power is 

1 2TOTALP P P  .  Thus for 

two equal lenses, 

1 2

1 1 1 1 1 2
TOTAL

eff

P
f f f f f f

      , from which 1

2
eff

TOTAL

f
f

P
  .  Although standard spectacles 

do not exactly touch the eye’s lens, optometrists use the power of a lens to figure a person’s eyeglass prescription. 

A normal eye should have a power of about 1
6.25diopters

0.16m
eyeP   , and after measuring a person’s eye the 

optometrist figures the power of the spectacle lens necessary to correct it to normal. 



 

 

6-7.  Cassegrain Telescope.  Consider the arrangement of lenses and mirrors for the remote 

sensor shown above.  The primary collecting mirror M1 has an aperture of 50 cm and a focal 

length of 200 cm.  Secondary mirror M2 is located 150 cm in front of M1, has diameter 12.5 cm, 

and brings light to a focus 50 cm behind M1 (through the hole).  Lens L1 is 25 cm behind M1, and 

changes the converging light from the front mirrors into a collimated, parallel beam.  Mirrors M3, 

M4, M5, and M6 are flat surfaces which serve as an optical “universal joint,” allowing the 

telescope to swivel or gimbal around two perpendicular axes and bringing the light to a 

stationary detector.  Lens L2 brings the light to a focus on the electro-optical photodetector, FPA, 

25 cm away (from L2). 

 A.  What is the effective focal length of M1 and M2 together, and what is the f/#? 

 B.  Where is the image formed by lens L1?  Since lens L2 forms the final image on the 

detector, how far in front of L2 is the “target” that it is imaging?  Combined with M1 

and M2, what is the overall effective focal length of the telescope system? 

 C.  Filter F limits the bandpass of this sensor to 3.3 – 3.5 m and has 85% transmission.  

Mirrors M1 and M2 are polished beryllium, M3, M4, M5, and M6 are dielectric with 

reflectance 0.985 at 45º; and L1 and L2 are made of zinc sulfide with nominal 

thickness of 1 cm.  What is the system’s optical transmission factor? 

 D.  Suppose this sensor is used to image the Earth at night from a low altitude orbit of 

600 km.  Calculate the power in the Airy disk from a 1000 W incandescent light bulb 

(point source) in the field of view. 

 

SUGGESTED SOLUTION: 

 A.  Drawing the light path for the 

primary and secondary mirrors (at right, but 

not to scale), we see there is no need to 

calculate image or object distances, but we can 

only use proportional triangles to find the 

effective focal length ~ 

200 cm
800 cm

50 cm 12.5 cm

eff

eff

f
f    



From this, we can find the #f  to be 

800 cm
# 16

50 cm
f    

 B.  The problem statement explains that lens L1 forms a collimated beam, meaning the 

image it forms is “at infinity.”  The target lens L2 is looking at is therefore also “at infinity.”  

Since M2 forms an image 50 cm behind M1, but L1 cuts it off at 25 cm behind M1, and since the 

final image formed by L2 is 25 cm behind L2, we can reason that the overall effect of L1, M3, M4, 

M5, M6, and L2 is … nothing.  That is, the “universal joint” just takes the last 25 cm of beam path 

to the final image and moves it away from behind M1 to a photoelectric detector located 

somewhere else.  The effective focal length of the telescope as a whole is just the 800 cm we 

found in Part A. 

COMMENT:  The function of the optical collimator is to 

transfer energy from one place to another in a parallel 

beam so as to not lose any energy (by spilling over the 

edges of lenses or mirrors, but only by minimal reflective 

losses).  Lens L1 therefore outputs a parallel beam which 

forms an image at “infinity.”  Note that the “object” for 

lens L1 is the original image formed by the primary and secondary mirror.  Since this object is 

“behind” the lens, the object distance is negative; consequently lens L1 has a negative focal 

length and is said to be a negative, or diverging, lens. 

1 1 1 1

1 1 1 1 1

OBJ IMG OBJd d f d
   


1 1

1

1
25 cmOBJf d

f
      

 The parallel beam input to lens L2 is then coming from “infinity.”  (The two lenses are 

therefore complements of one another, the second reversing action of the first.  Since the beam 

between L1 and L2 is a parallel beam, the distance between L1 and L2 could be any distance, even 

zero.)  We can then find the focal length of the second lens: 

2 2 2

1 1 1 1

OBJ IMGd d f
  


2

2

1 1
25cm

25cm
f

f
     

 Since the original image is formed 25 cm behind L1, and the final image is formed 25 cm 

behind L2, the overall effect is as though the two lenses weren’t even there, which is the point of 

the collimator-universal joint optical assembly. 

 C.  Following photons through the optical 

system, we first look up the reflectivity of beryllium, as 

in Figure 6-19, replotted at right.  Within the bandpass, 

an average value of reflectivity for polished beryllium 

appears to be about 96%. 

 Next, a careful reading of the optical properties 

of zinc sulfide shown in Figure 6-12, shows that its 

transmission in the bandpass is approximately 0.67.  But 

this is for a nominal thickness of 5 mm, whereas our 

lenses are 10 mm (1 cm) thick.  Assuming a Beer’s Law 



relation for the transmission through any thickness of lens, we can adjust as follows: 

2
(5mm) (1cm) (5mm) 2 (5mm) 20.67 0.67 0.45LENS e e e e                  

Before leaving off our discussion of the lenses, we note that the refractive index
2
 of zinc sulfide 

is approximately n ≈ 2.48 at 3.34 m.  This would give a surface reflection (Equation 3-10) and 

transmission of 
2 2

1 1.48
0.181 and 0.819

1 3.48

n

n
  

   
      

   
 

This is huge!  With four surfaces (two lenses) the transmission through the surfaces alone would 

only be 
40.819 0.45 .  Because of this, we will assume the lenses have anti-reflection coatings 

on them, so we can subsequently ignore any small reflection losses. 

 Taking all the elements in order, the total transmission function is 

1 2 1 3 4 5 6 2

0.96 0.96 0.45 0.985 0.985 0.985 0.985 0.45 0.85 0.15

OPT M M L M M M M L FILTER                 

         
 

COMMENT:  Evidently there must be some very good reason for using the zinc sulfide lenses, 

because otherwise their optical transmission kills the signal. 

 D.  Begin this part of the problem by assuming the BULB  = 1000 W light bulb is an 

incandescent lamp with a tungsten filament at a temperature of T  2400 K.  Assuming it is a 

graybody with constant emissivity, the fraction of its power emitted in our bandpass (limited by 

the filter to 3.3 – 3.5 m) is ~ 
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 



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 
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 
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Its intensity is then 
4

IN BAND
IN BANDI







 , which gives us an irradiance at aperture of 

2

IN BAND
ATM

I

R
E .  The power through the aperture is then APERTURE APERTUREA E

2 2

1 2

4 4

D D  
  

 
E  where we take into account the obscuration caused by the secondary mirror.  

Finally, the power reaching the focal plane is FPA APERTURE OPT   and the power in the Airy 

disk is 0.84PSF FPA     image is.  Putting it all together ~  
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 http://refractiveindex.info/?group=CRYSTALS&material=ZnS. 
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 What is slightly askew in this last expression is 

an improper treatment of wavelength dependence.  

Technically, the atmospheric and optical transmission 

functions are functions of wavelength, so should be 

included in the integral.  We have already calculated 

OPT , which we tacitly assumed to be constant over the 

bandpass.  Not so ATM ; the plot at right shows it to have 

considerable variation.  Therefore, a more correct 

calculation is 

   2 2

1 2

4 2
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16
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 To complete the calculation, the integral is computed in the companion spreadsheet, and 

all the other values (known or assumed) can be plugged in to give ~ 

  
 

4 2 3 2 2

14

8 2 4 4 5 2

0.84 2.02 10 W/m (10 W) (0.50m) (0.125m) (0.15)
10 W

(16) 5.67 10 W/(m K ) (2400K) (6 10 m)
PSF





   
   

 
 

MORE CONSIDERATIONS:  This doesn’t seem like a lot of power, but let’s calculate how many 

photons this is.  The energy per photon is approximately 

205.8 10 JPHOTON

hc
E



   , 

using an average wavelength of 3.4 m.  This gives the rate of photons being received as 
14

5

20

5.5 10 W
10 photons/s

5.8 10 J






 


, 

which is more than an adequate number to detect.  (However, we have ignored the part of the 

question where it says that this collection takes place at night – we really should calculate the 

background radiation to see if we can detect the light bulb against it.  The worst case background 

in this bandpass would most likely be reflected moonshine.) 

 One more question we should probably ask is “What’s the size of the PSF?”  A 

straightforward calculation is 

1.22 (2)(1.22)(8.00m)(3.4μm)
2 μm

0.50m
A

f
r

D


     diameter 

Comparing this to the size of a nominal pixel – about 10 m – we estimate the PSF is therefore 

more than 13 pixels wide!  If we estimate the number of pixels within a PSF as roughly 
2(6.5pixels) pixels   , then the rate of photons falling on a pixel within the PSF is, on the 

average, about 7300 photons per second.  There will be more photons falling on central pixels, 

and less on the outer pixels, of course, but this should still be sufficient for detection. 

  



6-9A.  Combinations of Filters.  Consider three separate filters with the transmission functions 

plotted at left in the figure below.  If two of these filters were selected for a remote sensor and 

were placed in the optical collection system in tandem (one after the other), calculate and plot the 

transmission if filters 1 and 2 were selected.  Repeat for filters 1 and 3.  Repeat again for filters 2 

and 3.  Does it matter in which order the filters are placed into the optical system?  Finally, 

calculate and plot the transmission function if all three filters were used. 
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SUGGESTED SOLUTION:  The light propagated through filters in tandem is the product of the 

transmissions through the individual filters.  The order of the filters does not matter.  See the 

spreadsheet where we have calculated the transmission through tandem filters in pairs and for all 

three.  Here’s the plot: 

 

 

 

6-9B.  A Weird Composite Filter.  Again refer to the filter transmission functions at left in the 

figure above, and the sketch on the right of a weird composite filter made from sections of the 

three individual filters:  a 60º sector from filter 1, a 120º sector from filter 2, and a 180º sector 

from filter 3.  Calculate and plot the transmission function for this composite filter. 

 



SUGGESTED SOLUTION:  Things are a little different this time.  One-sixth of all the photons 

incident on the composite filter will pass through the first segment, one-third through the second 

segment, and one-half through the third segment.  Of those photons, only those with wavelengths 

within the bandpasses of the segments are transmitted, and then only in the amount of the 

transmission of their respective segments.  In all, the number of photons making it through at any 

wavelength is the sum of those that have passed through the three segments.  The calculations 

are in the companion spreadsheet, and here’s the plot. 

 

 
 

 

6-11.  A BIG Camera.  The camera pictured here is on display at the National Museum of the 

United States Air Force, Wright-Patterson Air Force Base, Riverside, Ohio.  The placard on the 

display (in lower left of photograph) reads: 
The “Boston Camera” 

This camera, manufactured for the US Air Force by Boston 
University in 1951, is the largest aerial camera ever built.  It 
was installed in an RB-36D in 1954 and tested for about a 
year.  Later it was used in a C-97 aircraft flying along the air 
corridor through communist East Germany to Berlin, but a 
10,000 ft altitude restriction imposed by the communists made 
the camera less useful than at a higher altitude.  It was also 
used on reconnaissance missions along the borders of Eastern 
European nations.  The camera made an 18  36 inch 

negative and was so powerful that a photo interpreter could 
detect a golf ball from an altitude of 45,000 feet.  Dr. James 
Baker of Harvard University designed the camera. 

TECHNICAL NOTES 

Shutter:  focal plane, fixed slit, pneumatic drive, electrically  
             tripped 
Shutter speed:  1/400 sec 

                Resolution:  28 L/mm (lines per millimeter) 
                                                               Weight:  6500 lbs (camera and aircraft mount) 

Note that the inset in the photograph shows the focal length and f-stop marked on the camera’s 

primary lens.  Using these data and the flight information suggested by the placard, calculate the 

size of a golf ball’s image on the camera’s film plane.  Calculate the size of the PSF and compare 

to the image’s size. 

  



SUGGESTED ANSWER:  The writing on the front of the camera indicates that its focal length is 

240″ (= 20′) and its f-number is f/8.  (This would give an aperture 

diameter of 
240"

30"
8

 ( 2.5') , which looks about right from the 

picture.)  Assuming the camera is pointing straight down, we’ll take 

the dimensions of its focal plane (film) to be 18" 1.5'x    and 

36" 3'y    as stated.  Its IFOV is then ~  
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 Since we are MASINTers, we probably don’t appreciate the IMINTers’ need to see larger 

areas to literally identify more activities and objects.  Although the IFOV from 10,000′ seems 

impressive to us, it is probably insufficient for monitoring borders. 

 The question of GSD is not quite as simple.  Since it is claimed a PI (now called “IA:  

Image Analyst”) can resolve 28 lines per millimeter, what is meant is that you can resolve 28 line 

pairs per millimeter where a “line pair” is a white and a black line.  Nyquist’s criterion specifies 

that we must sample the line pair with TWO pixels.  (In this case, a pixel is a number of film 

grains, but we don’t want to go there.)  That means we need to have 56 pixels per mm or 17.9 

m per pixel on our focal plane.  This gives us ~  

10,000'
For 10,000' ~ GSD 17.9μm 8.95mm

20'
   

45,000'
For 45,000' ~ GSD 17.9μm mm

20'
    

This last result more or less agrees with the placard’s statement that we could detect a golf ball
3
 

from 45,000′, although there is some room for interpretation what is meant by the word “detect.”  

Common usage in the IMINT world of such words (including “resolution”) differs somewhat 

from what we have learned in the non-literal world of MASINT. 

SOME COMMENTS:  There are at least two more issues that we might want to address before 

leaving this camera behind.  First, motion compensation:  the aircraft platform, a C-97, is 

probably flying at about 210 kt.  (This is estimated from the author’s experience of having 

refueled behind a KC-97 tanker a couple of times.)  Its ground speed – and the motion of the 

IFOV over the ground – is about ~ 

                                                 
3
 United States Golf Association (USGA) rules specify that a golf ball shall be no smaller than 42.67 mm diameter. 



210 NM 10,000km 1hr
m/s

hr 5400NM 3600s
    

For the given shutter speed (1/400 s), the camera moves forward a distance of ~ 

108m/s 1/ 400s 27cm   

Obviously, this is much greater than the alleged GSD, so the camera needs to have some form of 

motion compensation to hold the image “still.”  This can be accomplished by either rotating the 

camera on a pivot (which appears likely judging from the huge spindle sticking out the side of 

the camera) or the focal plane (film) could be moved in a proportional amount opposite to the 

motion. 

 Second, supposing the camera is being flown along the border at 10,000′ and 210 kt.  For 

maximum coverage, we want to orient the FOV such that we are taking pictures 1500′ wide 

(cross-track) by 750′ ( 230 m) high (along track).  This gives us only a little over two seconds 

between exposures to change the film.  Perhaps this is another reason why flying at the lower 

altitude is not as effective. 

 

 


