
SUGGESTED SOLUTIONS (ODD) 

 
CHAPTER 10 
 
NOTE:  Use three-digit precision for all calculations unless otherwise stated or implied. 

 

10-1.  A Proposed Forest Fire Detector.  Suppose a US Forest Service sensor is flown on a 

platform in a circular orbit at an altitude of 450 kmH  .  One channel of the sensor operates in 

the 8.00 12.00 μm   “thermal” bandpass.  The sensor’s Newtonian telescope has a collecting 

mirror of diameter 0.300 mD  , reflectivity 0.950  , and focal length 1.00 mf  .  The 

detector is Hg:Cd:Te with a quantum efficiency of 0.350  , and operates with an integration 

time of int 1.00 st  .  Each pixel on its focal plane has a square footprint of GSD GSD   

1.00 1.00 km .  (Compare this to the sensor’s theoretical spatial resolution.)  Assume average 

atmospheric transmission in-band is 0.950ATM   due primarily to absorption. 

 A.  Calculate a pixel’s output when it views a uniformly radiant forest on Earth’s surface 

having temperature 285 KTREET   and reflectivity 0.100.TREE   

 B.  Suppose a careless camper has started a small forest fire (less than one pixel) burning 

with temperature 800 KFIRET   and emissivity 0.800FIRE ò .  Further suppose that 

the fire’s radiation (only) is extinguished by smoke particles, 0.500.SCAT    What 

fraction of the IFOV of one pixel is ablaze if its output has increased by 1% from its 

forest-only value? 

 

SUGGESTED SOLUTION:  Before getting to the meat of this problem, there are a couple of 

preliminary calculations to be done.  First, according to this sensor’s specifications, the 

minimum resolvable angle (Rayleigh criterion) between two point sources (assuming diffraction 

limited) is 
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wavelength in the bandpass.  On the Earth this would be a physical separation of MINX h   

5 5(4.88 10 )(4.5 10 m) 22 m   .  Since we are told that GSD is 1 km, it is impossible to satisfy 

the Nyquist criterion for spatial resolution.  Therefore we understand that this sensor is strictly 

“non-imaging” and we can only rely on its output for signature interpretation. 

 Second, the period
1
 of this sensor is 5 2 3 3(9.895 10 s km )(6370 km 450 km)P       

5603 s , and its IFOV presumably travels 2 40,024 kmER   per orbit.  The speed of the field of 

view over the ground is therefore 
-140,024 km 5603s 7.14 kms  .  So in one second, a pixel 
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, which is covered in Chapter 11.  “P” is the orbital period and “a” is the semi-

major axis of the orbit (or radius for a circular orbit).  For near-Earth orbits, a  RE + H where RE  6370 km.  The 
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 when P is in seconds and a is in kilometers. 



receives photons from a strip of ground approximately
2
 1 km × 8.14 km.  That is, the problem 

does not imply that the sensor has any kind of motion compensation. 

 

A. When a pixel sees nothing but uniform forest in its IFOV (even with motion – photons 

from the strip of ground arrive at the sensor headed for the same pixel) its output should be ~ 
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where we have done the integral for a 285 K blackbody on the companion spreadsheet.  Note 

however that the integral has an extra factor of wavelength in it, so an extra micron unit pops out.  

To correct for this, we have to multiply by the appropriate conversion factor at the end. 

 

B. Now let us say that a fraction, F, of a pixel’s IFOV swath is covered by a forest fire with 

the parameters stated in the problem.  Essentially, this gives the pixel an output equal to the sum 

of the non-burning fraction of forest in its IFOV plus the fire as follows.  (Aside from the area 

difference and the temperatures and emissivities, the only other consideration is the addition of 

scattering above the fire from the smoke it produces.) 

                                                 
2
 Why is this 1 km × 8.14 km and not 1 km × 7.14 km?  It is because the back of a pixel’s IFOV moves forward the 

7.14 km during one integration time, but the front projects out another km ahead. 
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As indicated, the last step in our problem solution is to set our answer equal to 10% more than 

what we had in Part A.  The fraction of a pixel’s swath that needs to be covered with fire turns 

out to be quite small: 
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QUESTION:  How big an area is this? 

ANSWER:  Since a pixel’s swath (per integration period) covers an area of 1 km × 8.14 km, this 

small fraction amounts to only about 6.06×10
-3

 km
2
, or an area about 78 × 78 m.  (This is 

approximately the size of a regulation soccer field, 100 m × 60 m.)  Our answer is remarkable, 

but certainly what the US Forest Service would want from such an overhead forest fire detecting 

sensor.  Another problem, of course, is that such a sensor would not have a frequent enough 

revisit rate to any given forest to provide anything close to continuous warning. 

 

 

10-3.  Counting Polar Bears.  In response to 

an RFP, we propose the arctic polar bear 

population be counted by a Polar Orbiting 

Osological Habitat (POOH) sensor.  POOH is 

to orbit at 100 km, have a 1×1° FOV, and 

sense 11± 0.5 µm photons.  From altitude, the 

cold arctic landscape (T  –40C) appears 

roughly uniform with an albedo of 50%.  

Polar bears, on the other paw, are warm-blooded critters (T  40C), and their fur is 

approximately 5% transmitting in the thermal infrared.  (Their fur is closer to ambient than body 

temperature.)  Estimate whether polar bear detection is possible with POOH.  (Assume a 

spherical polar bear with enough fur to make a rug covering  10 m
2
 of floor space.) 

 



SUGGESTED SOLUTION:  First, we’ll calculate the expected output of the POOH sensor when 

it sees the Arctic background.  Our assumption is – working in the thermal infrared – there will 

be little or no reflected sunlight, so this method for detecting polar bears, if it works, should be 

able to find them in the dark (which is a good thing for above the Arctic Circle in the winter).  

The appropriate phenomenological end-to-end equations for the background is 
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To simplify this calculation, we will assume that cos R  1, and that ATM, OPT, and  are all 

wavelength independent.  Then since there are several sensor parameters in this equation that are 

unspecified, but are the same for both background and bears, we will divide them out to make a 

reduced equation ~ 
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where we have used the companion spreadsheet to numerically compute the integral (this should 

be routine by now – we’ve used the same type of calculation for the last three problems). 

 Second, and in a similar vein, we calculate the expected output of our POOH sensor 

when it sees a polar bear, assuming a bear is a point source ~ 
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We will treat this formula in the same manner as the last one, and according to the problem 

statement, this end-to-end equation will be for 5% of the bear’s body heat transmitting through 

its fur ~ 
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 If this is a non-imaging sensor, then with six orders of magnitude difference between 

background and bears, it looks like our proposal will never fly. 



 

NOTE ADDED:  The justification for the 5% transmission of polar bear fur comes from a study 

by J.A. Preciado, B. Rubinsky, D. Otten, B. Nelson, M.C. Martin, & R. Greif, “Radiative 

Properties of Polar Bear Hair” (ASME 2002 Advances in Bioengineering, BED Vol. 53), 

available on-line at http://infrared.als.lbl.gov/pubs/PolarBearASME.pdf.  Their Figure 1, is 

reproduced here, showing that at thermal wavelengths, maybe even 5% is an overestimate.  From 

the paper, the general behavior of polar bear fur seems to be to absorb high energy (ultraviolet) 

radiation and transmit the energy to the beast to keep him warm.  The individual hairs are mostly 

transparent, but appear white because of visible light scattering in the fur.  Polar bears’ skin is 

actually dark as well. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10-5.  An Alien Remote Sensor.  A (very) remote sensor on a satellite in a 350 km circular orbit 

around an alien planet has a collecting area of 100 cm
2
 and a circular FOV of 0.05 sr.  The 

optical transmission function, the sensor’s quantum efficiency, and the transmission through the 

planet’s atmosphere are, respectively, 
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The sensor sees a uniform extended surface, filling its FOV, having a spectral radiance of 
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A.  What is the spectral bandpass of this sensor? 

     B.  What is the irradiance on its aperture from the source (in the sensor’s bandpass)?  

Express this answer in both watts per square centimeter and photons per second per 

square centimeter. 

     C.  What is the power on the focal plane of the sensor (in the sensor’s bandpass)?  

Express this answer in both watts and photons/second. 

D.  What is the electron count rate from the focal plane due to this source? 

 

SUGGESTED SOLUTION:  A.  The bandpass of this sensor is defined by the optical 

transmission function:  0.22    1.05 m.  This is shown in the companion spreadsheet where 

the two wavelength-dependent sensor parameters, optical transmission and quantum efficiency, 

are calculated and plotted.  (Note that the atmosphere does not transmit light at wavelengths 

shorter than 0.28 m.  This will have an influence on our calculations, but does not impact the 

bandpass of the sensor itself.) 

B. There are two ways to do this part of the problem – numerically and analytically.  First, 

we can tackle it numerically like we have done several times before.  The irradiance on the 

sensor’s aperture, in “engineering units” is 
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where the integral has been evaluated in the companion spreadsheet (Column H), and we have 

ignored the cosine of the fixation angle.  Our justification for the latter comes from calculating ~ 
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Also note, by the way, that there is no contribution to the irradiance between 0.22   < 0.28 m 

due to the atmosphere.  This changes the limits on the integral, and the atmospheric term itself 

comes out of the integral because it is a constant. 

 The photon irradiance on the sensor’s aperture is found similarly by dividing the surface 

spectral radiance by the energy per photon ~ 
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 Both of these answers can be gotten analytically by actually doing the integrals (for those 

who know how).  For the irradiance, 
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Not surprisingly, we got the same answer.  The only caution with this solution is watching out 

for the units.  The constant in the spectral radiance (call it c* = 210
-7

) carries the units of watts 

per square centimeter per steradian, and the natural logarithm is unitless.
3
 

 And for the photon irradiance, the answer is a particularly simple integral, but a morass 

of units to wade through; although the wavelength dependence appears to cancel out, there is a 

residual conversion as shown here: 
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C. Because the optical transmission function is a constant not dependent on wavelength, 

finding the in-band power and number of photons per second passed to the focal plane array is 
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D. As you can tell by now, we are building up the solution to this problem piece-by-piece.  

Now that we’ve got the power (and photons) at the focal plane, we want our photo-detector array 

to turn it into electron output rate.  That’s easy ~ the end-to-end equation should be familiar ~ 
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~ but introduction of the quantum efficiency again requires us to be a little careful.  For the 

quantum efficiency to be dimensionless (well, “electrons per photon” technically, but that’s not a 
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unit) the coefficients “0.3” in the denominator of the lead term, and in the denominator of the 

exponent, must both have units of microns if we’re going to express wavelength in microns.  

Doing the calculation in microns makes the most sense, so tracking through the units shows us 

that we’re going to need to include a microns-to-meters equivalence factor ~ 
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where we only need to evaluate the integral, remembering that the limits are 0.28 – 1.05 m.  

(Note that the numerical factor as calculated in the last equation properly has units of m
-2

s
-1

 

while the integral has the units of m
2
.)  The integral can be done numerically ( 0.562) as in the 

companion spreadsheet, or the brave-hearted of you can do it “by parts” ~ 
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In either case, the final answer to our problem is ~ 

  13 2 1 2 111.21 10 μm s 0.0562μm 6.79 10 electrons/secondN      . 

This answer seems reasonable in light of the fact that we found in part C the flux of photons to 

the detector is 2.79×10
12

 per second while the average
4
 quantum efficiency is around 0.243. 
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10-7.  Estimating Anthropogenic Light Pollution.  Some “Earth at Night” pictures are mosaic 

images collected by weather satellites in their near-IR bands.  Estimate the output and noise of 

such a sensor from (a) one square kilometer of typical Midwestern US suburbia on a dark night 

(as shown in the Google image below), and (b) compare to the output of one square kilometer of 

alto-cumulus clouds on a moonlit night.  Some sensor parameters are as follows: 

 Platform: Orbit:  830 km near-circular, sun-synchronous 

 Optics:  Aperture:  30 cm diameter, 2.8% obstructed 

   Focal length:  5.25 m (two mirrors, two lenses) 

   Transmission:  81% throughput (all surfaces AR treated) 

   Filter:  78% transmitting in 0.81 – 1.05 m band 

 Detector: Silcon FPA:  1024  4096 pixels, 1.22  4.92 cm 

   Quantum efficiency:  0.48 in 0.4 – 1.12 m band 

   Filling factor:  88% 

   Framing & integration:  8 Hz @ 90% DC 

 Some other hints for putting together your estimates for this problem might be that (1) 

US tract homes typically have 200 A electrical services (to run all of the appliances we consider 

to be necessities), (2) the International Dark-Sky Association, www.darksky.org, is trying to 

minimize the number of lights pointed upwards (but the mean reflectivity of the Earth is  0.35), 

and (3) alto-cumulus cloud tops are typically at about 2,000 – 10,000 ft AGL.  You may also 

make use of the fact that the sun is visual magnitude
5
 –26.5, while the full moon is only –12.5. 

                                                 
5
 What is a “visual magnitude?”  That’s the number astronomers use to describe the brightness of an object – smaller 

numbers (more negative) are brighter, and one visual magnitude is equivalent to 
5 100 2.51  times as bright.  

How does this help?  Well, moonlight [not moonshine] is basically reflected sunlight. 

http://www.darksky.org/


 
 

SUGGESTED SOLUTION:  (a) The standard end-to-end equation we want to use for looking at 

an extended source is ~ 
ATM R OPT FILTER INTN L A t d

hc


 
     




F
.  Considering the hand-

waving that is going to follow, there’s no need to be precise about the bandpass integral, so we’ll 

just estimate this as ~ 
1

ATM R OPT FILTER INTN L A t
hc

      F .  One at a time, we’ll now work 

on the terms that go into this equation. 

 For the surface radiance, start with the Google image and count approximately 1000 

houses in the one square kilometer box.  Each house typically has a maximum electrical power 

usage of (200 A)(110 V)  2.210
4
 W, but ordinarily runs at only about 50% of that when the 

occupants are present (during Prime Time).  Let’s suppose that about 15% the usage, or 1650 W 

is being used for lighting.  This may seem a little high, but is deliberately so to include any 

public outdoor lighting (street lamps, parking lot lighting, commercial signage, etc.) that may be 

adjunct to each house (on the average).  Now let’s assume that only 20% of the power paid for 

lighting is for outdoor use ~ about 330 W per household.  With any luck at all, this will all be 

directed downward so that only about 35% of it, 116 W, is reflected skyward.  Next, out of the 

popular variety of lamps in use ~ incandescent, fluorescent, mercury and sodium vapor ~ let’s 

imagine that only 10% of their radiant output is in our sensor’s bandpass, 0.81    1.05 m 

(limited by the filter).  This gives us 11.6 W of reflected in-band radiant power per household.  

Then to complete the radiance calculation ~ 
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 Since the question asked is to estimate our sensor’s output from one square kilometer of 

suburban sprawl, we’ll take 
 

2
6

2

1km
1.45 10 sr

830km

    .  The light received through this FOV 

will fall on multiple pixels, of course, but we needn’t worry about how many since we’re just 

going for the total output. 

 A couple more preliminary calculations and we’re ready:  first, the aperture receiving 

photons is 
 

2

2 20.3m
(0.972) 6.87 10 m

4
RA

     and, second, the integration time is 

1
(0.90) 0.113s

8Hz
INTt   .  We also need to look up the average in-band atmospheric 

transmission value from a MODTRAN run we’ve done earlier (we find approximately 0.98), and 

calculate the average wavelength to be about (0.81 + 1.05 m)/2  0.93 m.  Now we’re ready to 

compute ~ 
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 Finally, for this part, we’ll just take noise in the output to be directly proportional to input 

photon noise, and estimate ~ 

7 42 5.1 10 10 electrons per sample     

 

(b) For the alto-cumulus clouds, the only thing we need different from the previous estimate 

is a value for the in-band radiance.  From Figure 4-21 of the text, we can read off that the 

spectral radiance of reflected sunlight from objects with reflectivity   0.9 (as should be the 

case for nice puffy clouds) is about 300 Wm
-2

sr
-1
m

-1
.  The in-band radiance of reflected 

sunlight should therefore be (300 Wm
-2

sr
-1
m

-1
)(0.24 m)  72 Wm

-2
sr

-1
.  Since the moon is 

14 visual magnitudes less bright (and we will assume this is good for the near IR as well), its 

reflected radiance from the cloud tops should be (72 Wm
-2

sr
-1

)(100
14/5

)  1.810
-6

 Wm
-2

sr
-1

.  

This is ignoring any attenuation of moonlight through the atmosphere, but we’re fairly safe 

because ATM  0.98 is well within our fudge margin.  Thus, our sensor’s output when looking at 

moonlit clouds is ~ 
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 And this time the noise is ~ 

42 5 10 220 electrons per sample     . 

 

 

10-9.  Sensitivity to sensor and collection parameters.  Consider an element of a remote sensor’s 

output from a point source: 

2
cosATM R OPT INT

I
N t

hcR

 
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

   
F

 

where  , , , , , , and R OPT INTA t    F  are measured/known sensor hardware/electronic or 

operational parameters; 

 , , and ATM RR    are collection parameters; and 

 N  is the known sensor output. 

Spectral intensity, I , is, of course, the unknown.  Uncertainty in which of the measured, 

collection, and known parameters has the greatest influence on the uncertainty in our estimate for 

solving for I ? 

 

SUGGESTED SOLUTION:  First, solve the end-to-end equation for spectral intensity as in the 

text ~ 
2
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Next, find the variation
6
 in spectral intensity implicitly

7
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Dividing through by I  we have what is known as the fractional variation ~ 

                                                 
6
 In the calculus, the notation “d” means an infinitesimal change, while the notation “” means a larger, finite 

change.  For variation, the symbol “” is often used, as in this problem, to represent something in between.  In 

particular, this notation usually represents a small uncertainty.  The calculus rules for using  are usually taken to be 

the same as doing a derivative, or taking a differential. 
7
 This variation equation is the result of operating on the spectral intensity like a partial derivative.  A typical term is 

found like this, taking the variation with respect to N  ~ 
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 Thus we see that the fractional variation (or uncertainty) in our estimate of spectral 

intensity is directly proportional to the sum of the fractional variations (uncertainties) in all of the 

variables in its solution, with various coefficients for each.  Actually, all of the coefficients are 

“1” except for the range term (where it is “2”) and the cosine of the fixation angle (where it is “

sin R ”).  Since the sine is never greater than one, we conclude that our estimate in spectral 

intensity is most sensitive to uncertainties in our measurement or calculation of range from target 

to sensor. 

 To go one step further ~ although the equation for 
 I

I






 is most sensitive to 

uncertainties in the range, we point out that the quantity that is the least well known – the one 

with the most uncertainty – is probably the atmospheric transmission, ATM .  World-wide 

atmospheric conditions are not necessarily known, so considerable estimation and interpolation 

between weather stations be done to provide reasonable inputs to MODTRAN to generate an 

atmospheric transmission profile for any given collection location. 

 


