
SUGGESTED SOLUTIONS (ODD) 
 

CHAPTER 11  
 

NOTE:  Use three-digit precision for all calculations unless otherwise stated or implied.  You 

will discover that more precision is definitely needed for a couple of these problems. 

 

11-1.  Using Kepler’s Laws.  An Earth satellite is observed to have a height of perigee of 200 

NM and a height of apogee of 800 NM.  Find the semi-major axis, semi-minor axis, eccentricity, 

period, specific angular momentum, and specific energy of the orbit.  [Recall that 5400 NM = 

10,000 km by definition] 

 

SUGGESTED SOLUTION:  A tricky thing to this problem is converting the nautical miles (NM) 

to kilometers.  (Since the US Navy was engaged in our first satellite programs, it is not 

uncommon to see orbital parameters expressed in NM.)  The conversion goes like this, adding 

the mean radius of the Earth to get apogee and perigee distances ~ 

10,000km
(800 NM) 6366km 7847km and

5400 NM

10,000km
(200 NM) 6366km 6736km.
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Now we can find the semi-major axis as the arithmetic mean of ar  and pr : 

7847 km 6736 km
7292 km.
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Before finding the semi-minor axis, we solve for the eccentricity as ~ 

7847km 6736km
ˆ 0.0762 (almost circular).
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From the eccentricity, we could calculate the focal distance, c a , and plug it in to find the 

semi-minor axis from 
2 2 2 2 2b c a b a c     , 

but instead we’ll make the substitution (some algebra left to the student): 
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which is the geometric mean of ar  and pr .  Thus,  

  7847 km 6736 km 7270 kmb     

  



  

Using Kepler’s Third Law, we can easily calculate the satellite’s period ~ 
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 Next we will calculate the specific energy as ~ 
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where the conversion factors are necessary to make the units work out right.  From the energy, 

we can calculate the satellite’s speed at apogee (and perigee): 
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Then its specific angular momentum is: 
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7847 km 6.85 km s 5.38 10 km s or
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11-3.  Using Ellipse Dimensions.  For a certain Earth satellite it is known that its semi-major 

axis is a  30 × 10
6
 ft, and its orbital eccentricity is ˆ 0.2e  .  Find its perigee and apogee 

distances, rp and ra, from the center of the Earth, and its period, specific energy, and specific 

angular momentum.  Also, calculate its distance from the center of the Earth when its true 

anomaly is 45 , 90 , and 135 .P      

 

SUGGESTED SOLUTION: (Apologies for giving a distance in feet, but that was not 

uncommon in the Mercury/Gemini/Apollo era.)  Convert the 30 million feet into 9144 km, and 

press on with the calculation.  First, the apogee and perigee distances are 

ˆ(1 ) (9144 km)(1 0.2) 10,970km

ˆ(1 ) (9144 km)(1 0.2) 7315km.
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The period is straightforwardly calculated: 

2 2
3 3 5 2 3 3 m s h m s4 4

(9.895 10 s km )(9144km) s 144 58 24 58
N E E

P a a
G M

 



          . 



  

The specific energy is: 
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where the conversion factors are necessary to make the units work out right.  From the energy, 

we can calculate the satellite’s speed at apogee (and perigee): 
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Then its specific angular momentum is: 
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Lastly, the satellite’s distance from the center of the 

Earth at various anomalies is found by ~ 
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The sketch on the right shows the satellite orbit to scale, compared to the Earth.  Incidentally, the 

position of the satellite at 90° marks what is known as the “latus rectum” or “line at right angles 

(to the major axis through a focus)” of an ellipse.  It is usually designated as p, and is given by 

    2ˆ ˆ ˆ1 1 1p a e a e e     . 

 
 

11-5.  A Kinematics Problem.  A sounding rocket is fired vertically from White Sands Missile 

Range (WSMR).  It achieves a burnout speed of vBO  10,000 ft/sec at an altitude above sea level 

of zBO  100,000 ft.  Neglecting atmospheric drag, determine the maximum altitude the missile 

attains. 



  

SUGGESTED SOLUTION:  Remember the days of freshman physics when you solved motion 

problems with kinematics equations?  Back then we used one-dimensional equations ~ 

2 2 21
0 0 0 0 0 0 0 02

, ( ), ( ) ( ) , and 2 ( )a g v v a t t z z v t t a t t v v a z z             . 

The last equation (without time in it) would seem to work here where we identify 
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ft10,000 3.048 kms , 100,000 ft 30.48 km, and 9.81 10 kms .
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(Recall the acceleration is negative because altitude, z, is positive upward.)  We then set v = 0 at 

altitude z when the rocket reaches the top of its trajectory, and solve: 
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 The sharp-eyed of you will notice that the kinematics equation we used, which can be 

derived from 

dv
a dvdt

dzv dz
dt

  , is exactly the same as the conservation of energy equation we also 

used in freshman physics:  2 21 1
0 02 2

mv mgz mv mgz    where we have multiplied throughout by 

mass.  That is, the sum of mechanical energies – motion (kinetic) and position (potential) – is 

constant in the absence of dissipation.  We have that situation here (because we are ignoring air 

drag), BUT it is likely that the acceleration is not constant.  Recall that from the gravitational 

force 
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 To make a long story short, we need to use the correct form for the potential energy, 
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Solving for altitude: 
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and substituting 20 3 2 24 5 3 2(6.6732 10 km s )(5.979 10 kg) 3.9899 10 km sE
        and 

6366.2kmER   [that is, using a few more digits of precision] we get 
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Sure enough, as advertised our answer is about 8% larger! 

 



  

11-7.  Sidereal Timekeeping.  At noon (local mean time) on 21 June, a satellite in a highly 

elliptical orbit (HEO) is nearly overhead of Nenana, Alaska (64.5N, 149.1W).  The satellite 

makes two revs per day on a repeating ground track.  When the satellite is at exactly the same 

point in the sky (relative to the background stars) again on 21 September, 21 December, 21 

March, and 21 June (the next year) approximately what [local mean] time is it in Nenana? 

 

SUGGESTED SOLUTION:  Since a sidereal day (23
h
 56

m
 4.090524

s
) is 3

m
 55.909476

s
 

(235.909476 s) shorter than a solar day, the satellite appears in the same place in the sky (relative 

to the star background) approximately four minutes EARLIER each day. 

 From 21 June to 21 September is 92 days, so the satellite will return roughly 368 minutes 

before noon, or at about 6 AM.  To get this answer a little closer, multiply:  235.909476 s× 92  

21,703.671792 s  06
h
 01

m
 43.671792

s
 earlier, which is 05:58:16.328208 in the morning. 

 From 21 September to 21 December is 91 days, so the satellite will return in roughly 

another 364 minutes earlier, or about midnight.  To get this answer a little closer, multiply:  

235.909476 s× 91  21,467.762316 s  05
h
 57

m
 47.762316

s
 earlier, which is 00:00:28.565892, or 

only about a half minute past midnight. 

 From 21 December to 21 March (assuming a non-leap year) is 90 (calendar) days, 

HOWEVER, notice the following.  Two satellite revs later, the clock in Nenana has advanced 

one sidereal day, but the local mean time is 23:56:32.656416, or about three and a half minutes 

before midnight.  There are two instances of the satellite being in the same place in the sky on 21 

December!!!  Therefore, on the 90
th

 calendar day (21 March), the satellite will have passed 

through 91 sidereal days, and the local mean time in Nenana is about 6 PM.  To get this answer a 

little closer, multiply:  235.909476 s× 91  21,467.762316 s  05
h
 57

m
 47.762316

s
 earlier, which 

is 00:00:28.565892, or 18:02:40.803576. 

 From 21 March to 21 June is 92 days so the satellite will return in roughly another 368 

minutes earlier, or about noon again.  To get this answer a little closer, multiply:  235.909476 s× 

92  21,703.671792 s  06
h
 01

m
 43.671792

s
 earlier, which is 12:00:57.121784. 

COMMENT:  It might occur to you to ask why this is about a minute off from returning at noon 

where it started a year ago.  The difference is in the leap year:  the Earth makes about 365.25 

revolutions in a year whereas the satellite passes through about 366.25 sidereal days.  In 

approximately four years, the Earth will have rotated one extra time, and the satellite will have 

passed through an additional five sidereal days, so in four years, the satellite will again return to 

overhead at just about noon on the 21
st
 of June. 

 

 

11-9.  Revisit.  What are the field of regard (FOR) and orbital period, P, of a sensor on a satellite 

in low earth, circular orbit at 830 km altitude?  If the inclination of the orbit is 0º, should the 

sensor be able to see Quito, Ecuador (latitude ≈ 0º) on two successive passes?  (What other 

condition on the sensor is necessary?  HINT:  What is it’s FOV, and how is it oriented?)  If the 

inclination of the satellite’s orbit is 60º, will the sensor be able to see Quito, Ecuador on two 

successive passes?  [HINTS:  The second part of the question may seem daunting, but consider 

the worst case inclination (90°).  Then you will need to calculate the rotational speed of the Earth 

as it spins about its axis.  Also, you need to remind yourself of the other condition on the 

sensor’s FOV that is necessary.] 



  

SUGGESTED SOLUTION: First, see the scale drawing which 

is a cross-section view:  the satellite is at S and the center of the 

Earth is at O.  The satellite’s FOR extends to the horizon all 

around at tangent point T.  Since we know 6370 kmER   and 

7200 kmER h  OS , we can solve for R, , and  in triangle 

OTS:   
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There are various ways that we can now express field of regard.  (1)  In angular measure, it is not 

uncommon to see FOR given as 2 124.4   .  (2)  In linear measure, the ground distance from 

horizon to horizon could be quoted as   2 2 2 6370 km 27.8 6180 km
180

ENT R



 
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.  

(Note that this is less than twice the slant range to the horizon.)  (3)  It is also acceptable to give 

the surface area under the satellite (where the formula is given without proof, but recall how to 

calculate a solid angle) as:   
22 7 22 (1 cos ) 2 6370 km (1 cos27.8 ) 2.94 10 kmEA R         . 

 The period is a little easier to calculate from Kepler’s third law: 
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 When this sensor is in an equatorial orbit (inclination = 0°) of course it could see a target 

located on the equator (Quito, Ecuador) on two successive passes.  In fact it should be able to see 

Quito on every pass.  But the problem stem hints that there is another condition that we need to 

consider here.  It is simply that we must have that the sensor is capable of pointing at Quito.  

This will certainly be the case if the sensor is fixed nadir pointing or is a pushbroom type of 

configuration.  Some whiskbroom type configurations may also have the correct properties to be 

able to point in the right direction at the right time. 

 For the next part of the problem, let’s consider how far the Earth will rotate during one 

orbital period.  This is the distance that the ground track of the LEO appears to drift to the West.  

Since the Earth makes one complete rotation (360°) in one sidereal day (23.9345 hours), we 

have that it rotates 
360

1.6881 25.4
23.9345

hr
hr


    in that length of time.  That is, our sensor will 

cross the equator approximately 25.4° further west on each pass.  If we compare this to the fact 

that the FOR subtends 2 55.6    from the center of the Earth, then a little thought convinces us 

that any location on the equator should be visible from the satellite on at least two successive 

passes – some sites will be visible on three successive passes.  The condition we have to watch 

out for, however, is again whether our sensor has sufficient freedom from its perch on its 

platform to swivel around and point at an intended target within its FOR. 

 



  

11-11.  Analytic Geometry.  From the definition of an ellipse ~ namely that an ellipse is the locus 

of a point, P, in two-dimensional space such that the sum of the distances from the point to two 

other points, called foci (c and –c), is a constant ~ 

 A.  Derive the standard equation for an ellipse centered on 

the origin in the xy-plane:  
2 2

2 2
1

x y

a b
  , where a and b are the 

semi-major and semi-minor axis dimensions, respectively (with 

the major axis on the x-axis and the minor axis on the y-axis); and 

B.  From the standard equation derive 

the polar form for the ellipse with the 

origin at the right-hand focus (c) and the angle measured counter-

clockwise from the x-axis:  
1 cos

p
r


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, where p is the semi-latus 

rectum and 
c

a
   is the eccentricity. 

 

SUGGESTED SOLUTION:  There is some preliminary work to do 

before tackling the problem, working with the definition of an ellipse: 

L Rd d K  , 

where dL and dR are the distances to P from the left [(x,y) = (-c,0)] and 

right [(x,y) = (c,0)] foci, respectively, and K is the constant sum. 

 First, move P to the farthest-most point on the x-axis to the 

right [(x,y) = (a,0)].  Then, by inspection, 

andL Rd a c d a c    , 

so that 
 

           ( ) ( ) 2L Rd d a c a c a K       . 

 

Thus the value of K is determined. 

  

Second, move P to the top-most point on the y-axis [(x,y) = (0,b)], and from symmetry note that 

such that 2 2 2 .L R L R L Rd d d d d d a      

Thus with L Rd d a   in this instance the Pythagorean Theorem tells us 

2 2 2a b c   

since a is the hypotenuse of a right triangle whose legs are b and c. 

  

 A.  Finding the standard equation of an ellipse centered on the origin is now just a matter 

of grinding through the algebra.  Taking P to be any point on the ellipse as (x,y), proceed as 

follows: 
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Q.E.D. 

 

 B.  To transform the standard equation into polar coordinates, first translate the origin to 

the right focus, (x,y) = (c,0), to establish a parallel set of axes,  ,x y : 

x x c x x c

y y y y
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Thus the standard equation becomes 
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Before going farther, note at this point that when 0x   we have 
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which leads us to 
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which is the semi-latus rectum, p, and where we have used the definition of eccentricity. 

  

 With that out of the way, now consider a transformation into polar coordinates: 
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Referring to the figure at right, next calculate the sum of 

the distances from the foci to a point on the ellipse (that 

is, apply the definition again) where 
Rd r  and dL is 

found using Pythagorean Theorem again: 
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The rest is now just a matter of slugging through the algebra (and using a trig identity): 

   

 

2 2 2 2 2

2 2 2

2 2

2

sin 4 4 cos r cos 2

sin cos 4 cos 2

4 cos 2

r c cr a r

r c c r a r

r c cr a r

r

  

  



    

    

   

4  2 cos 4c cr   2 4a  2ar r

 

 

2 2

2
2

222 2

cos

1
1

cos 1 cos
1 cos

.
1 cos

r a c a c

c
a

aaa c
r

ca c
a

a

p
r



 




  

 
       

    
 

 


  Q.E.D. 

COMMENT:  Since     21 1 1p a a     , we can easily show the perigee and apogee 

distances: 
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