SUGGESTED SOLUTIONS (ODD)

CHAPTER 4

NOTE: Use three-digit precision for all calculations unless otherwise stated or implied.

4-1. Solid Angles. Using both the exact and approximate formulas, calculate and compare ...

(a) the solid angles, in steradians, subtended by symmetrical cones having (full) interior
angles of 5°, 10°, 20°, 50°, 100°, and 180°.

(b) the (full) interior cone angles, in degrees, of symmetrical solid angle cones
subtending =t sr, ©/2 sr, w/4 sr, w/10 sr, ©/100 sr, and /1000 sr.

& See spreadsheet Chapter 04 ~ Suggested Solutions (Odd).xlsx. =

4-3. Probability of Seeing a Star in a Random Direction. When we look up into the night sky,
we note that there is only one visible star, Polaris, within %2° of the North Pole (in any direction),
but there is NO star within a similar cone looking at the South Pole. (We determine this by
consulting a star chart, or by asking someone who lives in the Southern Hemisphere.) Use these
data to estimate the number of visible stars you should be able to see on a clear night (horizon to
horizon).

SUGGESTED SOLUTION: Noting that only Polaris is within %2°
of the North Pole suggests that if we looked into a 1° cone,
centered on the North Pole, we would see one star. Similarly,
looking into a 1° cone centered on the South Pole, we would see
zero stars. Based on these limited observations, we speculate
that the probability of seeing a star within a 1° cone in any
random direction is 50%. The solid angle measure of the
observation cone is
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and there are % ~ 26,262 such cones in a hemisphere.
X
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A Taking this as the number of possible random directions we

could look, and applying the 50% probability guesstimate, we
' : calculate we should be able to see about 13,131 visible stars.

' COMMENT: The Yale Bright Star Catalog lists 9110 stars
brighter than visual magnitude 6.5, which is considered to be the
usual visual limit (depending on where you are, how clear the
sky is, how good your eyes are, etc.). Presumably half of these

stars should be above your horizon at any given time (~ 4555
SOUTHERN SKY



stars), so our simple-minded guess apparently overestimates by a factor of three or so. This still
isn’t bad considering the crudeness of our initial observations (hamely just two data points).

4-5. Collecting Power and Photons. In the visible bandpass (0.4 — 0.7 um), how much power is
collected from a 100 W light bulb through a sensor’s four inch diameter aperture at a distance of
10 feet? How much power is collected at a distance of one mile? At these two distances, how
many photons are collected in one second of integration time?

SUGGESTED SOLUTION: Phenomenologically, the power collected through an aperture is ~

Power per

. Aperture
Do ectep =| UNItarea |x =

area
at aperture

where the irradiance, [, is given radiometrically for a point source as E = RZ’ We only have to
. . . . . o . zD?
assume that our light bulb is an isotropic radiator: | = % . With A, = , we have ~
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(Notice that we have solved the problem “in letters,” so we do not have to calculate intermediate
results for different values of the variables. This is recommended procedure for all problems.)
For data, we first refer back to Problem 2-17 where we found that a 100 W light bulb emits only
2.67 W in the visible band; then we convert D =4 in ~0.102 m, R =10 ft ~ 3.05 m, and

R =1mi~1.61x10®m. Plugging in:

at 10 feet, DcoLLECTED ® 1.87 x 104 W, and
atl mile, DcoLLEcTED ® 6.70 x 10_10 W.

Finding the number of photons collected has both a simple and a complicated answer.
The simple answer is to assume that all of the photons are of one wavelength, say 4 ~0.555 um,
divide our power [energy per unit time] by the energy per photon, E,, ooy = h% , and multiply

by the integration time, At=1s ~
— q)EMITTEDﬂ’ DZAt

NCOLLECTED - 16 hC Rz

This gives us:
at 10 feet, NcovLecTep ~ 5.21 x 10 photons, and

at 1 mile, NcovLecTeo ~ 1.87 x 10° photons.

The complicated answer is to consider how the light bulb emits photons distributed over
the bandpass. Naturally, this is left as an exercise for the student. The introduction of emissivity
of the light bulb filament would add a further complication.




4-7. Seeing a Target against a Uniform Background. An electro-optic sensor sees both a large,
extended Lambertian target filling its field of view and a bright point source target on its
boresight. Both sources provide the same irradiance on the sensor’s aperture. If the sensor is
moved to one half its original distance from the targets, how does the irradiance at its aperture
change? How does the irradiance on its focal plane change?

SUGGESTED SOLUTION: In general, irradiance on aperture will be the sum of irradiances
from all objects in a sensor’s field of view. In this case, we initially have E¢evoen =Eront =5 »

S0 Eyymiar = Eexrenoen + Eront =2, If we believe the formula we have derived for irradiance at

aperture from an extended source, E.,zvoep = L€2, then there is NO dependence on distance from
the source. Therefore, it doesn’t matter how far away we are from the source; the irradiance
from the extended source will be the same, in particular when the distance is halved. For the

point source, however, E,,,; = LZ - @ = 4% =4E,. Hence, moving to one-half the
2
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distance results in E,, - =E, +4E, =5E, = EEINITIAL

Irradiance on the focal plane means the power per unit area falling on the focal plane to
form an image. The image of an extended source is an extended image, but the image of a point
source is a concentrated “point” image. (Point source imaging is discussed in Chapters 6 and 8.)
When halving the distance to the targets, irradiance at aperture remains the same for the extended
source, thus the irradiance of the extended image will not change. But the irradiance of the point
image will increase proportional to the point source’s irradiance on aperture. That is, the

extended image “brightness” will not change, but the point source image brightness will increase
fourfold.

4-9. Detecting a Laser Designator. Suppose an aircraft flying at 80,000 ft uniformly irradiates
a circular spot on the ground 100 m in diameter with a 1000 W Nd:YAG laser (1.06 pum).
Assume the terrain is a perfectly diffuse reflector with p = 0.25.

A. To detect the presence of the aircraft, we place an upward-looking sensor on the
ground. What is the irradiance on its aperture from the laser when the aircraft is
directly overhead?

B. What is the reflected radiance of the ground from the incident laser light?

C. If adownward-looking sensor (on a “sky hook™) is 100 m
above the center of the laser spot, what is the irradiance at its
aperture? Assume the sensor is designed to only detect 1.06
um laser light.

D. Which sensor (Part A or Part C) has a better chance of
detecting the plane, and why?

E. Now suppose that the center of the spot is 500 m away (horizontally) from the
downward-looking sensor — what is the irradiance on its aperture?



SUGGESTED SOLUTION:

A. The irradiance on aperture of an upward-looking sensor will be the same as the irradiance of

the laser on the ground ...
Do (4)(1000 W) ~0.127 W

ﬂD% T (m)@oom)? T m?

Ecrouno ~

B. Assuming the ground is Lambertian (fully diffuse) ...

Lerounn = M arouno _ Pcrounp Eorounn _ (0.25)(0.127 W-m?) ~0.0101 VZV
T T T m-sr

C. This is not quite so simple because the sensor’s Field Of View (FOV)
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angle « =2tan ~53.1° is not “small” (see figure at right)." We —
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should use the full-up formula for calculating solid angle rather than an
approximation ...
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D. Well duh! The irradiance on the upward-pointing sensor is about one and a half times greater
than that on the downward-pointing sensor. BUT the upward-pointing sensor will only see the
airplane when it is directly overhead (well, within 50 m of overhead). Presumably the
downward-pointing sensor is designed to have a Field of Regard (FOR) from horizon to horizon
(like a fisheye lens), but also a filter so that the only thing it “sees” is the laser light. If your
mission is to detect enemy aircraft flying around lasing you, which sensor would you want to
detect it (you don’t necessarily know where the aircraft is going to be flying)?

E. This is a little trickier, but we assume that the only input to

the sensor is from the “extended source” of the laser spot on the ~———
ground, filling the Field of View (FOV) of a solid angle ) oo
subtended by that spot. Since we have a fairly oblique view of
the ground from the sensor, we’ll go ahead and approximate the e ‘,,l\{
solid angle ... ———
zD?s , )
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~5.98x10"° ﬂz
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! On the other hand, the calculations we made for 4-1 showed that the solid angle approximation for o = 53° is in
error by only about 1.8%.
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approximation for the sky-hooked sensor’s FOV we could have used in Part C. The following
plot shows the relative irradiance as a function of the horizontal distance from the sensors to the
center of the aircraft’s laser spot.
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Note that in the limit of x - 0, our formula is Egys0q = L
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4-11. Irradiance from a Point Source. Refer to the sketch at
right. A light bulb with intensity | is suspended above a table,
and a business card lies on the table. Consider the size of the
card to be small with respect to all other dimensions. Note
that 6. = 6.

A. For a fixed height of the bulb, h, find the distance,
X, for maximum irradiance on the card.

B. For a fixed distance, X, find the height of the bulb,
h, that maximizes irradiance on the card.

SUGGESTED SOLUTION:

A. The only tricky thing about this problem is recognizing that the card lying on the table is
“looking up.” That is, the light bulb is at a fixation angle & with respect to the card. In terms of
the dimensions given in the sketch ~

| | h h
E=—cosd, =—cosé,, where r> =x*+h? and cosd, =cosf, =— = —
R2 R r.2 P P L r \/m
Then we have ~ E= 2' > h___ Ih 2
OC+h?) 2 +h? (5@ +h?)
[1]

By inspection, we note that x only appears in the denominator. The irradiance will thus be
maximum when the denominator is minimum, and that occurs forx —0:

Ih lh |
P



B. This requires finding the maximum value of equation [1] in Part A. There are a couple of
ways to do this. If you don’t know calculus, then the graphical solution we show in the
spreadsheet will get you an approximate answer. If you do know calculus, then the solution is
the time-honored method of taking the derivative and setting it equal to zero ~

1 %h-2h
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(N
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X2 +h?—3n? =0
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4-13. Irradiance from a Satellite. A small spherical satellite (1 m radius) in a 350 km circular
orbit has an estimated steady state temperature of 290 K when in the Earth’s shadow. Assuming
its surfaces are perfectly diffuse and that its average reflectivity is 0.9 in the IR (see Problem 3-
5), calculate the number of thermally emitted photons per unit area per second received from the
satellite at a ground-based sensor when the satellite is directly overhead. The detector operates
in a narrow wavelength band (AX = 1.00 um), centered on the wavelength of maximum emission.

SUGGESTED SOLUTION: As a first cut, note that Wien’s Displacement Law suggests that a
290 K blackbody (or graybody for that matter) has maximum emission at a wavelength of ~

Aniax - 3000 ~10.3um (rule of thumb) or = 28978

290
Since our value for the temperature of the satellite is only an estimate anyway (and the satellite’s
temperature is certainly not constant as it cools in the Earth’s shadow), we’ll just use 10 um.

~9.99um (more precisely) .

Also noting that the bandpass is small (A% ~ O.l) , We can piece together some phenomenology
to get ~
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where our value for spectral blackbody exitance at A = 10.0 um comes from the spreadsheet
Blackbody.xlsx, for example, with the temperature set to 290 K.

If we learned our lesson from Problem 2-9, however, we know that there could be more
to this problem, particularly if the bandpass was wider. Since photon energy is a function of
wavelength, the proper formulation of this problem should be ~

photons _ r?

area-time  4hcR?

Ib(?t) B,(4,T)AdA

BANDPASS

where we threw in some wavelength dependence in the emissivity for good measure.

4-15. Comparing Emission and Reflection. Assume the sun is a blackbody at 5900 K. Assume
the Sahara Desert is a graybody with a steady state temperature of 315 K and emissivity

0 ~0.914. Calculate the wavelength at which reflected and emitted radiance are the same.
(Ignore atmospheric attenuation.)

SUGGESTED SOLUTION: (Note that since we want to calculate radiances at specific
wavelengths, we really mean spectral radiances in this problem.) First a little theory ~
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Then we calculate the radiances on a spreadsheet and plot them ~

1 E+02 Comparison of Reflected and Emitted Radiance

—Reflected Radiance
—Emitted Radiance
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1.E-01

Spectral Radiance

1.E-02 T T — T T T r T
0 1 2 3 4 5 6 7 8 9 10
Wavelength (microns)

The plot suggests that the cross-over is around 3.5 um, and a closer inspection of the
spreadsheet reveals that it is actually between 3.47 and 3.48 um.



4-17. Estimating Temperature. If the actual total solar irradiance on the Earth (called
“insolence™) is 1375 W-m, then calculate the effective temperature of the Sun.

SUGGESTED SOLUTION: Assuming the Sun is a blackbody and that we are talking here about
its insolence at all wavelengths ~

()
E— lsun _ - Ar _ Bsun Asun _ s Teun 47Tsun _ rszﬂ-lw
RZ RZ 47[R2 47Z_R2 SB RZ SUN
T4 R E _ , (1.5x10°km)?*(1375W/m?)
4 (6.95x10°km)?(5.67 x10°*W/(m°K™))

fsun Oss

~5797K

4-19. Line Source. A common fluorescent light bulb is four feet long and radiates 40 W of light
in the visible. What is the irradiance on a business card lying on a table six feet directly under
the middle of the lamp?

SUGGESTED SOLUTION: Let the light bulb be of
length A, then define the “power per unit length” emitted | X || dx

™~

/
by the tube as @, :c(ij;i) such that Id),,dx=®. (Note
T J &

the symbolic allusion to a distribution function, just like 0, 0
the spectral radiometric quantities.) Then the intensity of
do @, dx
4 4z '
supposing that every element of the tube can radiate in all
directions — ignoring the end directions being obscured
by the physical size of the tube itself.
The element of irradiance on card C due to

element of intensity dl is then ~

dl ®,dx 1 h  ®nh dx

dEZECOSHZ e (X2+h2)\/X2+h2 - iy (X2+h2)%

an element of the bulb of length dx isdl =

where the geometry is as defined in the sketch, and we C

took a clue from the previous “card on the table” Problem 4-11. To find the total irradiance on
the card, all we have to do is sum up (integrate) the contributions from all of the intensity
elements of the light bulb from end to end ~
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where Re and ¢ are the distance and angle to the end of the bulb, respectively.

Finally, sticking in some numbers ~
(=4ft=122m, h=6ft=183m, R, =(2ft)° +(6ft)’ =6.32ft=1.93m

o, = 2W 3 gwim, sing, = 222™2 o316
T122m 1.93m
2.8 W/m)(0.31
g - (328 WIM)(0.316) _ 501 \yym?

(27)(183m)



