CHAPTER 13 ~ SUGGESTED SOLUTIONS (ODD)

13-1. A Little Rocket Science. Suppose that the Rocket Boys® of southern West Virginia
construct a rocket out of a £ ~ 1 m steel pipe? (O.D. ~4” and L.D. ~ 3.5”) with a h = 6” solid steel
nose cone. (Assume the steel has about the density of iron pre ~ 7.68 g/cm®.) They fill the tube
with a “rocket candy” solid fuel having lsp ~ 100 s and prc ~ 1.38 g/cm®. Using just Newtonian
physics by neglecting air drag and ignoring any nozzle-induced pressure differential components
of thrust (simple rockets like this one don’t have nozzles to speak of), calculate the time from
ignition to burn-out, the vertical velocity at burn-out, and their expected maximum altitude. The
mass flow rate during burn is approximately 2.45 kg/s.

SUGGESTED SOLUTION Working with the volumes and masses first,
but ignoring any additional mass of possible stabilizing fins ~

2 h
Fuel Volume, Vg, = il 2‘-0- ¢ ~6210cm®
Fuel Mass, M. = prc Vie = 8.57 kg %7'0- B
2 LD.
Body Volume, Vg, = 7Dop,. ~Vqe #1900 cm’®
4 C

Body Mass, Mg, = pp: Vs #14.6 kg

2
Nose Volume, V. = %”D%h ~ 412 cm®

Nose Mass, M. = oV, =3.16 kg ‘
LIFT-OFF MASS, m, = (Mg + M) + M. = 26.3kg

BURN-OUT MASS, M, =M, +M,. ~17.8kg

Now for the motion: Newton’s Second Law says for the powered flight portion of the
launch ...

F=ma= m% = Thrust — Weight = mv, —mg

since we are neglecting drag, and we’re assuming there is no pressure differential component to
thrust. With m=m, —mt where m is the (constant) mass flow rate, t is time after ignition/lift-

off, and taking v, to be a constant characteristic of the motor, we have, upon integrating® ~

! Original title of the autobiographical book now known as “October Sky” by Homer Hickam, Jr. (Delacorte Press,
1998). It was dramatized in a film in 1999 that doesn’t exactly follow the book. Note that Rocket Boys is an
anagram of October Sky.

2 0.D. means outside diameter and 1.D. means inside diameter (of a tube or pipe). Assume the density of steel is the
same as that of iron, pre ~ 7.68 g/cm3.

® Thanks to the CRC Standard Math Tables, 26" Edition (CRC Press, 1981).
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Now we need v, which we get from the specific impulse ~

and assuming motion is only in the upward (z) direction® [v(t) =

Iy = Tr\‘/:,/“St - :’;‘; = v, ~ 1,9 ~(100s)(9.81m-s2)~ 981 m-s™.

We also need the rocket motor burn-out time, tg, , which we get from ~

t —Mec . 857Kg 55
®°  m 245kg-s*

Then noting that mt,, =mg., we can plug in for the burn-out speed® ~

8.57 kg
26.3kg

Vao *—(981m-s™) In{l— j— (9.81m-s7?)(3.50s) ~352m-s™* (about Mach 1),

and for the burn-out altitude ...

-1
7, ~(203KQ)O8IM S ) )y BTG Y\ [y 8STKO) 4141 19 81m.52)3505) ~ 572m.
2.45kg-s 26.3kg 26.3kg 2

The burn-out time, location (altitude in this case), and speed are known as the the BURN-
OUT STATE VECTOR, (tg, Zgo, Vgo) , Which inserts the rocket into its gravity-only ballistic

mid-course flight. (Although this model rocket probably does not go high enough to escape the
influence on atmospheric drag.) At that point, the rocket body just obeys the usual kinematic
rules of freshman physics (assuming its max altitude is much less than Rg so we can ignore the
altitude-dependence of g), from which we can calculate the time to reach apogee and its altitude
(when v=0):

Vo | ¢ _352m-s”

—+1lp = —+3.50s~39.4s, and
g 9.81m-s

V:VBO_g(t_tBO) = tAPOGEE:

* Thanks again to the CRC Standard Math Tables, 26" Edition (CRC Press, 1981).

-1
® Note the average acceleration is approximately 7 ~ Av ~ 352m-s

At 3.50s
astronaut on this rocket, it would definitely not be a soft ride.

~101m-s? ~10.3«g’s”. If you were an



2
. V2, (352m-s)
Vo =Vao —20(Z2—Z50) = Zppocee = +Zgo ®

~ 572m~6,890m.
2g ™ (2)(9.81m~s‘2)+

This is impressive, but then this self-made model rocket is significantly larger than the
sort of thing that is available through hobby stores. (Don’t try this at home!)

COMMENT: It is probably a serious error to neglect atmospheric drag since this simple-minded
calculation produced a speed of about Mach 1 (= 300 m/s) without it. This would complicate the
problem, however, so we won’t include it. Also, the drag would play a big role in the descent
from apogee ~ the rocket body may attain its terminal velocity and would take a longer time to
come down than it did to go up. Yet another complication we could crank in would be the
addition of a nozzle on our rocket. There would then be no closed-form solution because
atmospheric parameters would have to be calculated along the trajectory.

ANOTHER COMMENT: Considerable Googling turns up mass flow rates (m ) in the
neighborhood of a few kilograms per second, and Isp values in the neighborhood of 100 s for
model rocket engines. There seems to be a difference between “choked” and “unchoked”
motors, but we won’t touch that one either at this level of difficulty.

13-3. Propulsion: Conservation of Momentum Imagine that you are sitting in a sled, at rest,
on a frictionless surface. You and your sled have mass “M”. You also have another “fuel” mass,
“m”, with you on the sled. You throw the fuel mass off the back of the sled with speed “v”
RELATIVE TO YOURSELF. (a) Using conservation of momentum, calculate your reaction
speed, “V1;”. (b) Now reset the problem (you’re at rest again with m on your lap) and imagine
that you break m into two equal pieces, m/2. Using conservation of momentum, calculate your
reaction speed “V1,” after throwing the first half of the fuel off the sled. Then calculate your
reaction speed “V,,” after throwing the second half of the fuel off the sled (while you’re in
motion from throwing the first half). [Reminder: you always throw a mass off the sled with
speed v relative to yourself, regardless of your state of motion.] (c) Repeat the problem
breaking m into three pieces, m/3, calculating your speed Vs3. (d) Finally, generalize the
problem by breaking the fuel into N pieces, m/N, and calculate your speed, V.

SUGGESTED SOLUTION
(a) First, watching from a stationary reference

. "FUEL" ME znd my 3LED
frame (at right), you see me, my sled, and the Massm N i Y
fuel. Then I throw the fuel off the back of my =
sled, glVlng . “\Hﬂl:i.a physics problem: frictionless surface
mv N -

0=MV,;-mv = Vuzﬁ' ‘%. -'-d'i %ﬁ]




(b) Second, my throwing off half the fuel (top part of sketch below) gives a similar result:
m

2_y.
M+%

At this point you can choose to continue to watch me from your stationary frame (at left, below):

m m
O:(M +E]V12—EV j— V12:
m m
(M +EJV12 = MV22 —E(V _V12)’
or you can transform to a frame moving with me (at right, below) before | throw the second half:
0=MV,, —gv with V,, =V, +Vj,.

Both approaches give the same results (or anything algebraically equivalent) ...

1
M 1+1
2

2|3

IN STATIONARY IN FRAME MOVING
FRAME WITH SPEED ¥,

(c) Third, if I break my fuel into three pieces, your conservation of momentum calculation (left
as an exercise for the student) is

Vas = ks i m ; m
M 1+ -— 1+ —
3M 3M

By inspection, you should hopefully start to see a pattern emerging, even though we’ve only
thrown out two pieces of fuel.

(d) Using the method of reasoning called induction (going from specific cases to the most
general case), the emerging pattern suggests that when I chop my fuel up into N pieces and throw
them off the sled one at a time, I get ...



m
M

_mv ZN: 1
NM | 1-1m
N M
where the summation notation makes things more compact.

Looking at this sum, “we” wondered what

0502

it looked like, so we plotted it (at right). (See the

companion spreadsheet for the calculation, 0500 \
dividing the fuel into 1, 2, 3, ... 20 chunks, where p9s I

| chose some values for M, m, and v.) The shape

of this curve is not obvious from the generalized
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SPEED (mls)

summation, but apparently it tells me that I can

actually get the most forward speed if | can throw 0490 \M

my fuel off the sled in one piece. That’s nice, but 0488

it may not be practically possible if the value of v S
(the surrogate for escape gas velocity, Ve) is too

NUMBER OF FUEL CHUNKS

high ~ I’m not strong enough to throw the whole
thing off the sled at that speed. (See the companion file, “Chapter 13 ~ Suggested Solutions
Appendix I” for a complete analysis of the N-chunk problem.)

13-5. Co-addition of Frames. In a certain situation we want to locate some nighttime activity
that is characterized by some outdoor lighting that amounts to an area with an average in-band
radiance of about 10® W/m?sr. As a worst case, surrounding events, reflections from external
sources, and internal detector and electronic biases and operating conditions provide a random
noise floor equivalent to about 5 x 10° W/m?sr in the scene. Clearly, the signal-to-noise ratio
(SNR) is prohibitively low to allow reliable detection. However, we know that we can enhance
the SNR by the co-addition of frames. If we want to boost our SNR to at least 4 for positive
identification, how many frames of data must we co-add?

SUGGESTED SOLUTION Astronomers use this all the time. To see a star that is only about
20% as bright as the background noise, they overlay (add with PhotoShop or equivalent)

multiple images, say M of them. This artificially enhances the signal-to-noise by a factor VM .
Here we want to go from 0.2 to 4, so ...

4=yM(02) = M:(Oizj =400.

Thus in principle we can enhance the signal to noise by co-adding 400 frames. Other problems
associated with this procedure may be (1) do we have the patience to collect 400 frames in the
first place, (2) what else might be changing while we’re trying to collect the frames (distance to



target, background, etc.), and (3) can we co-register the frames all to the same geolocation.
There are many other problems associated with this method you could think of.

13-7. Temporal Superposition. A fighter aircraft carries two pods of 19 each 2.75” white
phosphorous (WP, or affectionately “Willy Pete”) rockets — one under each wing. If the pilot
holds down the trigger and fires them all at a target in about eight seconds (they fire sequentially:
left-right-left-right- ... ), estimate the maximum intensity we would see with an AIRS sensor.
Each rocket’s launch signature is approximately one second long.

SUGGESTED SOLUTION  Below left (next page) is a hypothetical launch signature of a WP
rocket as it comes out of its pod ~ modeled as a constant burn for about one second. Supposing
the rockets fire at a constant rate from each pod ~ that’s 38 rockets per eight seconds, or close
enough to approximately 0.20 s per rocket. If the pilot holds the trigger down, their composite
launch signature will look something like the middle figure (which is a theoretical superposition
of 38 individual signatures at high time resolution ~ see spreadsheet). The maximum apparent
intensity is about five or six times that of one rocket, and lasts for a total of about 8.5 seconds. If
an overhead sensor, integrating/sampling at 5 Hz say, sees the launch, its output may be
somewhat as shown at right. The apparent signature is clearly greater and longer than that of a
single rocket. As with other events, it would take more information than just this one collection
to ascertain what it was.

Sampled Signature
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13-9. Temporal Sampling. On the Suggested Problems DATA worksheet for this problem you
will find a (synthetic) transient event signature, provided at a time resolution of 0.005 s.

A. Assuming the phase of the event is coincident with the start of a sensor’s integration
time, show what the collected signature looks like for sampling at 1 Hz, 2 Hz, 5
Hz, and 10 Hz. (Assume 100% duty cycle for simplicity.)

B. Show what the 10 Hz collected signature looks like when the event begins 0.02 s,
0.04 s, 0.06 s, and 0.08 s after the start of the sensor’s integration time.

C. Again assuming no phase difference, show what the signature looks like when
sampled at 20 Hz, 50 Hz, and 100 Hz.

D. What sampling rate is optimum for this event?

SUGGESTED SOLUTION:



A. The problem does not specify the units for the signature given in the event file, so we will
just take it to be something proportional to the amount of energy received by the sensor during
each 0.005 second integration period. So instead of integrating the area under the curve — as the
sensor temporally integrates its input signal — we will simply add the values given at their
collection times. To show the sampled signatures, we will then “normalize” the results (see
spreadsheet) to a maximum value of 100 (whatever units) for each signature. We will do the
sampling at the various rates by supposing the energy collected during each frame is reported at
the beginning of the sampling interval. Here are the results of undersampling ~
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B. The event signature has been “phased” and sampled on the Suggested Problem Solutions
(ODD) worksheet by pushing the given event signature “down” by 0.02, 0.04, 0.06, and 0.08
seconds. The delayed events have then been sampled at 10 Hz as above, and the results are
shown here. Note the difference in appearance of the apparent signature.
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C. This time the event (zero phase) is oversampled. The following plot shows the results.
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D. Certainly we see that sampling this transient signature at 1, 2, or 5 Hz is not fast enough to
see any details in the changing signature; we would call this undersampling. On the other hand,
sampling at 20, 50, or 100 Hz is clearly fast enough to see the details, but these are probably
more information than we need, so we would call them oversampled. Furthermore, we must
remember the faster we sample the shorter time interval we have to collect energy, so we are
going to be more subject to noise (which was not a factor in this simulated signature).

The optimum sampling rate therefore appears to be 10 or 20 Hz to preserve the
approximate shape of the signature (at least for this one). To be slightly more analytical, we note
that the fastest rate of change of the signature occurs between 0.0 and 0.1 seconds. To
adequately sample this change, according to the Nyquist sampling theorem, we should therefore
sample at about every 0.05 seconds, or 20 Hz. This is satisfactory for this particular (synthetic)
signature, but is not a general rule, although the difficulties associated with faster sampling — low
integrated energy and too much data to process — may limit practical sensors to about this
maximum rate.



