SUGGESTED SOLUTIONS (ODD)

CHAPTER 2

NOTE: Use three-digit precision for all calculations unless otherwise stated or implied.

2-1. Frequency, Energy, and Wavenumber. Some monochromatic beams of “light”
have wavelengths of 555 nm, 2.50 um, 12.0 um, 1.00 cm, and 40.0 m in vacuum.

A. What are the frequencies of the electromagnetic waves of these radiations (in Hz)?
B. What are the energies of photons having these wavelengths (in J and eV)?
C. What are the wavenumbers associated with these wavelengths (in cm™)?

< See spreadsheet Chapter 02 ~ Suggested Solutions (Odd).xlIsx for solution. =

2-3. Number of Photons. A monochromatic source of radiation emits two watts of power at a
wavelength of 1.50 um.

A. How many photons is it emitting in one second?
B. How long would it take for this source to emit 10'° photons?

& See spreadsheet Chapter 02 ~ Suggested Solutions (Odd).xlsx for solution. =

2-5. Number of Photons. Suppose that equal numbers of red and blue photons of light are
arriving at the Earth from the sun. What is the ratio of the energies of blue light to red light that
is reaching us?

@& See spreadsheet Chapter 02 ~ Suggested Solutions (Odd).xlIsx for solution. =

2-7. Index of Refraction. What is the speed of light, and what is the wavelength of a “green”
photon (A = 555 nm) inside of ...

(@) adiamond (index of refraction n = 2.40),
(b) aglass lens (n~=1.60), and
(c) atank of water (n~=1.33)?

& See spreadsheet Chapter 02 ~ Suggested Solutions (Odd).xlIsx for solution. =



2-9. Photon Emission. A certain object radiates 30.0 watts per square meter from its surface in
a 1.00 um bandpass centered on 10.0 um. Estimate the number of photons emitted per second
from one square meter of surface area.

SUGGESTED ANSWER: There are several levels of sophistication to this problem:
(A) LEVEL ZERO

Since we are given that an object emits M = 30.0 W/m? from its surface, that’s M = 30.0
joules per second per square meter. So for one square meter @ = 30.0 joules per second are
emitted (® = M-A where A = 1.00 m?). If we assume all of the photons have 4 = 10.0 pm, then
the energy per photon is

_hc/ _ (6.63x107*J-5)(3.00x10°m/s) ~ 20
E /1 (10x10-°m) 1.99x107J per photon

The number of photons coming from our square meter per second is then

N = % _300J %99 10 Jphoton = 1.51x10*photons per second.

(B) LEVEL ONE

We also are told that the M = 30 W/m? is in a A4 =1 um band centered on A =10 um.
So this is actually M = EZS M ,dA where M, is how the energy is distributed across the band.

What is this distribution, and what does it mean in terms of photon
emission? Answer: We don’t know how it’s distributed! But to
make headway on this problem, we’ll assume the simplest possible
distribution of energy — a constant value for all wavelengths. When
we remember that integral calculus (the expression above) is just

calculating the area under a curve, then we can do the simple math for
the area of the box sketched here:

W 105 ) . S N
BOF = Ig.s M ,dA = height x width=M , xAA=M, x(1um).

Thus
30 W/m?

M, =
* 1pum

=30 W/(m?-pum). NOTE THE UNITS!

Having chosen this simple, constant, value for spectral exitance, we see that there is as
much power (energy per unit time) per unit area emitted at short wavelengths as at long
wavelengths [speaking of the 9.5 —10.5 um band]. BUT we also know that energy per photon is
inversely proportional to wavelength ... so it takes fewer photons of shorter wavelength. How
do we fold this into our calculation for the total number of photons emitted per second from our
unit area?




This is how we do it: spectrally. We calculate the number of photons per second per
(3/(s-m’um))(m?®) _ photons

J/photon s um
across the band. Adding them up means we INTEGRATE:
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{COMMENT: don’t worry if analytical evaluation of integrals isn’t in your bag of mathematical
tricks. What you need to know is what an integral does — it finds (adds up) the area under a
curve. We can always do it numerically if we must — see the next discussion for example.}

unit wavelength, whichisN, = Mﬂ% { } , and then add them up

9.5

Evaluating this last expression requires some scrutiny of the units. Since we did the
integral with wavelength in micrometers, attention to detail shows that we need to stick in a
conversion factor to make it work out:

N (30 W/(m*um))(1.00 m?)
(2)(6.63x107*J-s)(3.00x10°m/s)
~1.51x10* photons/s
Well! This isn’t any different than our LEVEL ZERO answer, but only because we are
working to three significant digits. We wouldn’t expect it to be much different anyway because
the bandpass is relatively narrow.

Im
10°um

[ (10.5 um)* - (9.50 um)zj(

(C) LEVEL TWO

We just completed the calculation for a simple assumed energy distribution function.
Since we don’t know what the actual distribution function is, we could have used anything (the
simpler the better!) and probably gotten nearly the same answer (unless we chose some really
bizarre function). This time let’s inject a little reality and assume that the energy distribution
function is related to the Planck blackbody function.

This assumption introduces two new difficulties: what is the temperature, and what do
we do about the emissivity? That is, we must satisfy the given requirement that

10.5
30.0 W/m? = j% &(1)B, (4, T)dA

Graybody emissivity as a function of temperature

As usual, we make a simplifying assumption that across this !
narrow bandpass the emissivity is constant; it has the iy
“graybody” value &: 7
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GRAYBODY EMMISIVITY
o
'S
1

The relationship between allowed values of & and temperature,
T, is complicated by the integral, but is shown in the plot here.

(Since the maximum value of & is 1, the minimum temperature
of this emitting object is ~ 299 K.) [V LI
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Let’s suppose that the emitting object in this problem is the hot gas from the tailpipe of a
jet engine. It is a very tenuous gas (you can see through it at most wavelengths) at about 600 K
somewhere behind an aircraft, and its emissivity (from the plot) is ~ 0.0802. Now we have that
M, =06 B,(T) and we can proceed as before:

N =INﬂdi=ch—?dﬂ=J%di=%—A " aB,dA
C .
A A

This time, the integral can only be done numerically and has a value of ~ 3730 W-pum/m?. (Note
the units again!) We also have to pay attention to the units, as before, and stick in a conversion
factor to get

N - (0.0802)(1.00 m*)(3730W - um/m?)
(6.63x107**J-5)(3.00x10°m/s)

16m ~1.50x10* photons/s. .
10°um

Behold ~ the answer is still not much different! In fact, if you plot B,(600 K) over our bandpass,
you see that it is pretty flat, not changing by more than ~ 19 % from end to end.
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REMARK ABOUT THIS PROBLEM:

This multi-level solution goes well beyond anything you were expected you to do for
your homework solution; it’s just some things that you should be aware of. At any rate, if you
gave an answer like the LEVEL ZERO one, without having considered the bandpass, that’s OK
for now. However, it is very important that you learn that all sensors always sample across a
finite bandpass — the output you get is never representative of the sensor’s input at a single
wavelength. But always within some narrow bandpass that is usually defined by the
transmission of the collecting optics (including a deliberate and specific filter usually) and the
response function of the detector. These topics will all be covered in later chapters in the text.



2-11. Stefan-Boltzmann Law. Consider the Stefan-Boltzmann Law.

A. If the temperature of an object is doubled, by what factor is the total power per unit
area emitted by the object increased?

B. By approximately what factor is the power per unit area emitted by an object in the
microwave band increased when its temperature is doubled? [HINT: What
approximation to the Planck function applies at “long” wavelengths?]

SUGGESTED ANSWER:

A. The point of this problem is to first note how the TOTAL power per unit area changes with
temperature. From the Stephan-Boltzmann result,

B(T)=[B,(4T)dA=0g,T*,
0
we see that if T — 2T , then B(2T) =16B(T)

B. If we are only concerned with the microwave portion of the spectrum, then if we can
approximate the Planck function with the Rayleigh-Jeans Limit, we have

BT)~ | &ld/”t:[& [ d’le

4 Y
c, 4 C2 microwave A

MICROWAVE ~2
Since we see that power per unit area in the microwave band varies directly with the
temperature, we have that when T — 2T the exitance goes as B(2T) =2B(T). This should
dramatically emphasize to us that temperature increases are most apparent as IR/visible/UV
power per unit area emissions.

2-13. Planck Blackbody Radiation. Consider the 2.00 — 3.50 um SWIR band.

A. For which of the following steady state temperatures would an ideal object emit the
most radiation in the band: 300 K, 900 K, 2700 K, or 8100 K? [HINT:
remember what an integral represents on a graph.]

B. Estimate the power radiated in this band by a blackbody at these four temperatures.
C. Estimate the number of photons radiated per second these values represent.

@ See spreadsheet Chapter 02 ~ Suggested Solutions (Odd).xlsx for solution. =

2-15. Discussion on the Planck Function. When you go to the hardware store to buy
fluorescent light bulbs, you find that there are some which give a relaxing blue-white light that
are called “cool white”, and then there are some others which have a nice yellow-orange, even
pinkish glow that are called “warm white.” If the output of these bulbs was solely due to
continuum radiation (it’s really not), then based on your knowledge of the Planck function,
WHAT IS WRONG HERE? (Should you tell the store manager?)



SUGGESTED ANSWER: From our knowledge of the Planck function, objects that are
blackbodies increasingly emit more photons toward the blue end of the visible spectrum with
increasing temperature. So physically, an object that appeared blue to us would actually be
hotter than an object that appears red. If the fluorescent lamp bulbs were blackbody radiators,
then they are labeled backwards from what our psycho-physiology tells us. Fluorescent lamps
are not blackbodies, however, so there’s really nothing wrong here — physics-ally speaking.
Unless the store manager was a technoid like, it probably wouldn’t get more than a blank stare,
so don’t bother bothering the poor overworked person.

2-17. Incandescent Light Bulb. The filament of a “100 W” light bulb is a thin tungsten wire
about 0.500 mm in diameter (~ 24 AWG) and 3.40 cm long. When turned on, the filament
temperature is approximately 2400 K. Assume it is a blackbody radiator.

A. At what wavelength is the maximum power per unit area per unit wavelength
emitted?

B. What is the total power per unit area and the total power emitted?

C. Estimate how much power is emitted in the visible band (0.400 — 0.700 pm), and
what fraction is this of the bulb’s nominal rating?

D. How much power is emitted in a 2.00 nm wide bandpass centered at 0.555 um?
E. For your last answer, how many photons per second is this?

& See spreadsheet Chapter 02 ~ Suggested Solutions (Odd).xlsx for solution. =

2-19. Temperature Measurement I. There are several ways to assign a temperature to a
radiation emitter. Any such temperature is presumed to bear some relationship to the true
temperature, but is probably not equal to it because all measurement methods assume ideal
blackbody or graybody (constant emissivity) conditions. A simple method is to locate the
wavelength of peak spectral exitance and deduce the corresponding blackbody temperature using
Wien’s displacement law (this assumes the ability to locate and measure the radiation peak).

A. If we measure that a certain emitter has its radiation peak at a wavelength of 1.50 pum,
what is our estimate of its temperature (assuming it is a blackbody)?

B. If we determine that the object’s graybody emissivity is 0.700, now what is our
estimate of its temperature?

@ See spreadsheet Chapter 02 ~ Suggested Solutions (Odd).xlIsx for solution. =



2-21. Temperature Measurement I11. In practice, real sensors do not measure all of the energy
emitted, but only that in a finite bandpass. Nonetheless, a method similar to Problem 2-20 could
be applied in a bandpass where a blackbody temperature is assigned to an (assumed) graybody
radiator. That is, a graybody has an exitance equal to that of the blackbody (in the bandpass).
Use the Planck function to estimate the brightness temperature of a source with emissivity 0.700
whose spectral exitance in a 4.00 um bandpass in the thermal infrared (8.00 — 12.0 um) is
measured to be 1000 W-m™.

SUGGESTED ANSWER: The solution to this problem is somewhat more involved — but much
more practical — than the previous problems. When a sensor observes what we will presume is a
graybody source in a finite bandpass, its output is proportional to

M(ﬂl’ﬂZ’TGB):Jj;Mﬂ(ﬂ“’TGB)dﬂ“: O‘GBJ.;Q B;y(ﬂw-res)d/1

where 4; and A, are the limits of the sensor’s bandpass, 05, IS the graybody emissivity, and Teg
is the actual temperature of the object.

In the spreadsheet, we have calculated the value of the integral of the blackbody function
for assumed graybody temperatures from 250 to 950 K over the 8.00 — 12.0 um bandpass, which
gives about a two order-of-magnitude spread. We have then multiplied the integral by graybody
emissivity values from 1.00 (a true blackbody) to 0.100, and have plotted the results. The plot
actually turns the data around and shows us the temperature as a function of in-band exitance.
As we would expect, the plot shows us that the object’s exitance decreases as itS emissivity
decreases. [Note in the plot’s legend that Excel flubbed trying to use the proper symbols!]

The meaning of these data (in the plot) are twofold: FIRST, when we DO know the
emissivity of the object we are observing (as in the context of this problem), we enter the plot at
the value of exitance we are observing and go up until we hit the emissivity value — when we
read off the temperature of the object on the left axis. Here, 1000 W/m? gives us an approximate
object temperature of 582 K (red diamond on plot). This is the object’s actual temperature. But
SECOND, if we DON’T know the object’s emissivity, the only thing we can reasonably assume
is that it is a blackbody (emissivity = 1). In that case, we again enter with our observed exitance,
but only read up to the first curve (red triangle); we estimate that the temperature is 525 K.

Note that if we don’t know the emissivity of an object, and we must assume that it is one,
then the temperature we derive for the presumed blackbody will always be less than the object’s
actual temperature. That is, only a blackbody at a given temperature can emit the maximum
amount of radiation, and any other object emitting the same amount must be at a higher
temperature.



2-23. Emissivity. Given the plot at right T =1 T
for the emissivity of a peculiar alien 0.5 3 ' ;' b
material at 2727° C, sketch its spectral = oo ] | : N
radiant exitance as a function of = ' / 3
wavelength. Note that the emissivity is £ °13 1 S ‘\_
plotted on log-log axes. [HINT: Notice — |* *** ' | "\
that the temperature is given in °C.] 002 | ! ; b
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@ See spreadsheet Chapter 02 ~ Suggested Solutions (Odd).xlIsx for solution. =

2-25. Aircraft Radiant Emission Il. The exhaust plume behind a jet airplane cools quickly as it
trails out behind, but it could be considered as a graybody with an average emissivity ~ 0.400
and a mean temperature about 70% that of the tailpipe (~ 800 K).

A. If atypical exhaust plume is about 1.00 m in diameter and ~ 100 m long, what is its
radiant power output in the 3.00 to 5.00 um band?

B. What is the difference between this problem and the previous one (Problem 2-24)?

@ See spreadsheet Chapter 02 ~ Suggested Solutions (Odd).xIsx
for solution to part A. =

SUGGESTED ANSWER PART B: Evidently, the previous problem (2-24) calculates the power
that appears to be emitted from a jet’s tailpipe looking straight into it from the back, ignoring
contributions or attenuation from the plume. This problem, however, calculates a power value
looking at the exhaust plume from the side. The obvious geometrical difference is one of what is
called “aspect” angle. Usually, the pointy end of an airplane is considered to be 0° aspect, and
viewing from the side is 90° aspect. Looking up the tailpipe is then 180° aspect. The effect here,
then, is that the last problem had us looking at a radiating area equal to that of the tailpipe’s
aperture (tD%4 ~ 0.785 m?); whereas this problem suggests that we “see” a radiating area
equivalent to the cross-section of a cylindrical plume (D x L ~ 100 m?).

There are some physical differences as well — the exhaust gasses cool (rather quickly too)
as they trail behind the jet. This is for two reasons: first, the hot gasses are not in thermal
equilibrium, so as they radiate they lose energy, hence cool; and second, they mix with the
surrounding atmosphere and lose even more energy through molecular collisions and turbulence.
From a remote sensing perspective, this means that we are not going to be looking at an object
that is at a constant temperature. We could treat this by integrating over the plume — providing
we know its temperature distribution from a combination of thermodynamics and fluid flow
considerations — or we can just make an estimate like we do here that the plume has some
average, effective value of temperature.

Furthermore, the hot (and cooling) exhaust gas is NOT a blackbody, but is semi-
transparent, hence we need to apply some value of emissivity as well. Since we suggest that the



emissivity at the tailpipe is 0.800 in the last problem, and we suppose that the gas has totally
cooled by the time it has reached 100 m behind the plane where its emissivity would be the same
as the ambient atmosphere (which we take to be ~ 0), we just use an average value of 0.400.
Note that this goes hand-in-hand with our presumption that the plume is semi-transparent and
cools rapidly as a function of distance behind the plane.

2-27. Population of Atomic Energy States. If there are 10° atoms in Problem 2-26, and their
temperature is 35,000 K, how many of them are in each energy state? How many are in each
state if their temperature is 3,500 K? Assume that all the energy levels are non-degenerate.

@ See spreadsheet Chapter 02 ~ Suggested Solutions (Odd).xlIsx for solution. =

2-29. Hydrogen Electronic Energy States I. The electronic energy states of atomic hydrogen
are given approximately by E, = -13.6 2 eV where n is the “principle quantum number”.
Suppose that some hydrogen atoms are all excited from their ground state (n = 1) to the state
n=4.
A. What are the energy and wavelength of the photons necessary to induce this (upward)
transition?

B. What are the energies and wavelengths of the possible photons that could be emitted
by the excited hydrogen atoms as they (radiatively) relax back down to their ground
state? (HINT: draw an energy level diagram.)

& See spreadsheet Chapter 02 ~ Suggested Solutions (Odd).xlsx for solution. =

2-31. Vibrational Energy States. Some carbon monoxide (CO) molecules are seen to emit
0.266 eV photons when they transition from their first vibrationally excited state (v = 1) to their
ground state (v = 0). What would be the wavelength of photons emitted by the CO if it were to
quantum leap from a v = 3 state to the v = 1 state?

& See spreadsheet Chapter 02 ~ Suggested Solutions (Odd).xlsx for solution. =



2-33. Population of States. Huge star-forming volumes of space are filled with atomic
hydrogen gas. Ultraviolet light from actively forming stars (hot, young, blue OB stars) can fairly
efficiently “pump” this gas into excited electronic energy states. Suppose that we observe that
the light coming from one of these star-forming regions consists entirely of Ha (656.3 nm) and
Hp (486.1 nm) radiation, and that the Ha is twice as “bright” as the HB. (That is, there are twice
as many Ha photons as HB.) Use this information to estimate the temperature of the atomic
hydrogen gas.

SUGGESTED ANSWER: The famous Ha (red) transition is an emission from a hydrogen atom
quantum leaping from its second excited state (n = 3) to its first excited state (quantum number
n = 2), and the HP transition is from the third excited state (n = 4) to the first. Problem 2-29

reminds us that the energy levels of the hydrogen atom are given by E, = —13-%2 eV. For the

second and third excited states, these energies are E; =—1.51 eV and E; =—-0.850 eV,
respectively. (Remember that the negative energy value means bound state in this case.)

Without knowing any other details of these emissions (oscillator strengths, branching
ratios, etc.), we can simply infer from the problem statement that the populations of the upper
energy states for the Ho and H transitions are in the ratio of two to one, i.e., N3 = 2Ny, just like

the observed line brightness’s from the gas cloud. Since the population of an energy state is
~AF; _AE, e,
e /%", we can calculate N, :%g3 e 7" and N, :%94 e /% for

given by N, = % g

our two emitting states. Assuming that gz = g4, we can take the ratio and simplify:

NT _AI%BT —AR
& _ 2N4 o 793 € _ e /keT _ e(AEA—AE%BT
& g e_AE%BT e_AE%BT
Z 4
Substituting the definition for AE, = E; — E;, where Eg means ground state energy (Egc = E1 =

-13.6 eV for hydrogen), we have:
”_ e([ErEl]f[Es—El%BT _ e(ErE:%BT

Taking the natural logarithm, this can be immediately solved for our estimate of the temperature:

E,—E, (-0.850eV+1.51eV)(1.60x10" %v)
(In2)k; (0.693)(1.38x10 31 )

=11,000 K




