
SUGGESTED SOLUTIONS (ODD) 

CHAPTER 4 

NOTE:  Use three-digit precision for all calculations unless otherwise stated or implied. 

 

 

4-1.  Solid Angles.  Using both the exact and approximate formulas, calculate and compare … 

 (a)  the solid angles, in steradians, subtended by symmetrical cones having (full) interior 

angles of 5º, 10, 20, 50, 100, and 180. 

 (b)  the (full) interior cone angles, in degrees, of symmetrical solid angle cones 

subtending π sr, π/2 sr, π/4 sr, π/10 sr, π/100 sr, and π/1000 sr. 

 See spreadsheet Chapter 04 ~ Suggested Solutions (Odd).xlsx.  
 

 

4-3.  Probability of Seeing a Star in a Random Direction.  When we look up into the night sky, 

we note that there is only one visible star, Polaris, within ½ of the North Pole (in any direction), 

but there is NO star within a similar cone looking at the South Pole.  (We determine this by 

consulting a star chart, or by asking someone who lives in the Southern Hemisphere.)  Use these 

data to estimate the number of visible stars you should be able to see on a clear night (horizon to 

horizon). 

SUGGESTED SOLUTION:  Noting that only Polaris is within ½ 

of the North Pole suggests that if we looked into a 1 cone, 

centered on the North Pole, we would see one star.  Similarly, 

looking into a 1 cone centered on the South Pole, we would see 

zero stars.  Based on these limited observations, we speculate 

that the probability of seeing a star within a 1 cone in any 

random direction is 50%.  The solid angle measure of the 

observation cone is 
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and there are 
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 such cones in a hemisphere.  

Taking this as the number of possible random directions we 

could look, and applying the 50% probability guesstimate, we 

calculate we should be able to see about 13,131 visible stars. 

 

COMMENT:  The Yale Bright Star Catalog lists 9110 stars 

brighter than visual magnitude 6.5, which is considered to be the 

usual visual limit (depending on where you are, how clear the 

sky is, how good your eyes are, etc.).  Presumably half of these 

stars should be above your horizon at any given time (~ 4555 



stars), so our simple-minded guess apparently overestimates by a factor of three or so.  This still 

isn’t bad considering the crudeness of our initial observations (namely just two data points). 

 

 

4-5.  Collecting Power and Photons.  In the visible bandpass (0.4 – 0.7 m), how much power is 

collected from a 100 W light bulb through a sensor’s four inch diameter aperture at a distance of 

10 feet?  How much power is collected at a distance of one mile?  At these two distances, how 

many photons are collected in one second of integration time? 

SUGGESTED SOLUTION:  Phenomenologically, the power collected through an aperture is ~ 
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where the irradiance, , is given radiometrically for a point source as 
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(Notice that we have solved the problem “in letters,” so we do not have to calculate intermediate 

results for different values of the variables.  This is recommended procedure for all problems.)  

For data, we first refer back to Problem 2-17 where we found that a 100 W light bulb emits only 

2.67 W in the visible band; then we convert D = 4 in  0.102 m, R = 10 ft  3.05 m, and  

R = 1 mi  1.61  10
3
 m.  Plugging in: 

   at 10 feet, COLLECTED  1.87  10
-4

 W, and 

   at 1 mile, COLLECTED  6.70  10
-10

 W. 

 Finding the number of photons collected has both a simple and a complicated answer.  

The simple answer is to assume that all of the photons are of one wavelength, say    0.555 m, 

divide our power [energy per unit time] by the energy per photon, 
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hcE
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by the integration time, t = 1 s ~ 
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This gives us: 

   at 10 feet, NCOLLECTED  5.21  10
14

 photons, and 

   at 1 mile, NCOLLECTED  1.87  10
9
 photons. 

 The complicated answer is to consider how the light bulb emits photons distributed over 

the bandpass.  Naturally, this is left as an exercise for the student.  The introduction of emissivity 

of the light bulb filament would add a further complication. 



4-7.  Seeing a Target against a Uniform Background.  An electro-optic sensor sees both a large, 

extended Lambertian target filling its field of view and a bright point source target on its 

boresight.  Both sources provide the same irradiance on the sensor’s aperture.  If the sensor is 

moved to one half its original distance from the targets, how does the irradiance at its aperture 

change?  How does the irradiance on its focal plane change? 

SUGGESTED SOLUTION:  In general, irradiance on aperture will be the sum of irradiances 

from all objects in a sensor’s field of view.  In this case, we initially have 0EXTENDED POINT E E E , 

so 02INITIAL EXTENDED POINT  E E E E .  If we believe the formula we have derived for irradiance at 

aperture from an extended source, EXTENDED L E , then there is NO dependence on distance from 

the source.  Therefore, it doesn’t matter how far away we are from the source; the irradiance 

from the extended source will be the same, in particular when the distance is halved.  For the 

point source, however, 
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 Irradiance on the focal plane means the power per unit area falling on the focal plane to 

form an image.  The image of an extended source is an extended image, but the image of a point 

source is a concentrated “point” image.  (Point source imaging is discussed in Chapters 6 and 8.)  

When halving the distance to the targets, irradiance at aperture remains the same for the extended 

source, thus the irradiance of the extended image will not change.  But the irradiance of the point 

image will increase proportional to the point source’s irradiance on aperture.  That is, the 

extended image “brightness” will not change, but the point source image brightness will increase 

fourfold. 

 

 

4-9.  Detecting a Laser Designator.  Suppose an aircraft flying at 80,000 ft uniformly irradiates 

a circular spot on the ground 100 m in diameter with a 1000 W Nd:YAG laser (1.06 µm).  

Assume the terrain is a perfectly diffuse reflector with ρ = 0.25. 

 A.  To detect the presence of the aircraft, we place an upward-looking sensor on the 

ground.  What is the irradiance on its aperture from the laser when the aircraft is 

directly overhead? 

B.  What is the reflected radiance of the ground from the incident laser light? 

 C.  If a downward-looking sensor (on a “sky hook”) is 100 m 

above the center of the laser spot, what is the irradiance at its 

aperture?  Assume the sensor is designed to only detect 1.06 

m laser light. 

 D.  Which sensor (Part A or Part C) has a better chance of 

detecting the plane, and why? 

 E.  Now suppose that the center of the spot is 500 m away (horizontally) from the 

downward-looking sensor – what is the irradiance on its aperture? 

 



SUGGESTED SOLUTION: 

A.  The irradiance on aperture of an upward-looking sensor will be the same as the irradiance of 

the laser on the ground … 
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C.  This is not quite so simple because the sensor’s Field Of View (FOV) 

angle 1 50 m
2tan 53.1

100 m
     is not “small” (see figure at right).

1
  We 

should use the full-up formula for calculating solid angle rather than an 

approximation … 
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D.  Well duh!  The irradiance on the upward-pointing sensor is about one and a half times greater 

than that on the downward-pointing sensor.  BUT the upward-pointing sensor will only see the 

airplane when it is directly overhead (well, within 50 m of overhead).  Presumably the 

downward-pointing sensor is designed to have a Field of Regard (FOR) from horizon to horizon 

(like a fisheye lens), but also a filter so that the only thing it “sees” is the laser light.  If your 

mission is to detect enemy aircraft flying around lasing you, which sensor would you want to 

detect it (you don’t necessarily know where the aircraft is going to be flying)? 

E.  This is a little trickier, but we assume that the only input to 

the sensor is from the “extended source” of the laser spot on the 

ground, filling the Field of View (FOV) of a solid angle 

subtended by that spot.  Since we have a fairly oblique view of 

the ground from the sensor, we’ll go ahead and approximate the 

solid angle … 
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1
 On the other hand, the calculations we made for 4-1 showed that the solid angle approximation for  = 53 is in 

error by only about 1.8%. 



Note that in the limit of 0x , our formula is 
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approximation for the sky-hooked sensor’s FOV we could have used in Part C.  The following 

plot shows the relative irradiance as a function of the horizontal distance from the sensors to the 

center of the aircraft’s laser spot. 

 
 

 

4-11.  Irradiance from a Point Source.  Refer to the sketch at 

right.  A light bulb with intensity I is suspended above a table, 

and a business card lies on the table.  Consider the size of the 

card to be small with respect to all other dimensions.  Note 

that L = P.  

 A.  For a fixed height of the bulb, h, find the distance, 

x, for maximum irradiance on the card. 

 B.  For a fixed distance, x, find the height of the bulb, 

h, that maximizes irradiance on the card. 

SUGGESTED SOLUTION: 

A.  The only tricky thing about this problem is recognizing that the card lying on the table is 

“looking up.”  That is, the light bulb is at a fixation angle P with respect to the card.  In terms of 

the dimensions given in the sketch ~ 
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By inspection, we note that x only appears in the denominator.  The irradiance will thus be 

maximum when the denominator is minimum, and that occurs for 0x : 

3 3 2
2 2 2(0 )

MAX

I h I h I

h hh
  


E  

I

h
r

x

L

P







B.  This requires finding the maximum value of equation [1] in Part A.  There are a couple of 

ways to do this.  If you don’t know calculus, then the graphical solution we show in the 

spreadsheet will get you an approximate answer.  If you do know calculus, then the solution is 

the time-honored method of taking the derivative and setting it equal to zero ~ 
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4-13.  Irradiance from a Satellite.  A small spherical satellite (1 m radius) in a 350 km circular 

orbit has an estimated steady state temperature of 290 K when in the Earth’s shadow.  Assuming 

its surfaces are perfectly diffuse and that its average reflectivity is 0.9 in the IR (see Problem 3-

5), calculate the number of thermally emitted photons per unit area per second received from the 

satellite at a ground-based sensor when the satellite is directly overhead.  The detector operates 

in a narrow wavelength band (Δλ = 1.00 µm), centered on the wavelength of maximum emission. 

SUGGESTED SOLUTION:  As a first cut, note that Wien’s Displacement Law suggests that a 

290 K blackbody (or graybody for that matter) has maximum emission at a wavelength of ~ 

3000 2897.8
10.3μm (rule of thumb) or 9.99μm (more precisely)

290 290
MAX     . 

Since our value for the temperature of the satellite is only an estimate anyway (and the satellite’s 

temperature is certainly not constant as it cools in the Earth’s shadow), we’ll just use 10 m.  

Also noting that the bandpass is small  


   , we can piece together some phenomenology 

to get ~ 
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where our value for spectral blackbody exitance at  = 10.0 m comes from the spreadsheet 

Blackbody.xlsx, for example, with the temperature set to 290 K. 

 If we learned our lesson from Problem 2-9, however, we know that there could be more 

to this problem, particularly if the bandpass was wider.  Since photon energy is a function of 

wavelength, the proper formulation of this problem should be ~ 
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where we threw in some wavelength dependence in the emissivity for good measure. 

 

 

4-15.  Comparing Emission and Reflection.  Assume the sun is a blackbody at 5900 K.  Assume 

the Sahara Desert is a graybody with a steady state temperature of 315 K and emissivity

0.914ò .  Calculate the wavelength at which reflected and emitted radiance are the same.  

(Ignore atmospheric attenuation.) 

SUGGESTED SOLUTION:  (Note that since we want to calculate radiances at specific 

wavelengths, we really mean spectral radiances in this problem.)  First a little theory ~ 
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and ~ 
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Then we calculate the radiances on a spreadsheet and plot them ~ 

 

 The plot suggests that the cross-over is around 3.5 m, and a closer inspection of the 

spreadsheet reveals that it is actually between 3.47 and 3.48 m. 

 



4-17.  Estimating Temperature.  If the actual total solar irradiance on the Earth (called 

“insolence”) is 1375 Wm
-2

, then calculate the effective temperature of the Sun. 

SUGGESTED SOLUTION:  Assuming the Sun is a blackbody and that we are talking here about 

its insolence at all wavelengths ~ 

4 2 2
4

2 2 2 2 2

2 8 2 2

44
2 5 2 8 2 4

44

4 4

(1.5 10 km) (1375W/m )

(6.95 10 km) (5.67 10 W/(m K ))

SUN

SUN SUN SUN SB SUN SUN SUN
SB SUN

SUN SB

I B A T r r
T

R R R R R

R
T

r

  
 

 



    


   

 

E

E

 

 

 

4-19.  Line Source.  A common fluorescent light bulb is four feet long and radiates 40 W of light 

in the visible.  What is the irradiance on a business card lying on a table six feet directly under 

the middle of the lamp? 

SUGGESTED SOLUTION:  Let the light bulb be of 

length , then define the “power per unit length” emitted 

by the tube as 
0

such that
d
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dx


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the symbolic allusion to a distribution function, just like 

the spectral radiometric quantities.)  Then the intensity of 

an element of the bulb of length dx is
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supposing that every element of the tube can radiate in all 

directions – ignoring the end directions being obscured 

by the physical size of the tube itself. 

 The element of irradiance on card C due to 

element of intensity dI is then ~ 
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where the geometry is as defined in the sketch, and we 

took a clue from the previous “card on the table” Problem 4-11.  To find the total irradiance on 

the card, all we have to do is sum up (integrate) the contributions from all of the intensity 

elements of the light bulb from end to end ~ 
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where RE and E are the distance and angle to the end of the bulb, respectively. 

 Finally, sticking in some numbers ~ 
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