SUGGESTED SOLUTIONS (ODD)

CHAPTER 11

NOTE: Use three-digit precision for all calculations unless otherwise stated or implied. You
will discover that more precision is definitely needed for a couple of these problems.

11-1. Using Kepler’s Laws. An Earth satellite is observed to have a height of perigee of 200
NM and a height of apogee of 800 NM. Find the semi-major axis, semi-minor axis, eccentricity,
period, specific angular momentum, and specific energy of the orbit. [Recall that 5400 NM =
10,000 km by definition]

SUGGESTED SOLUTION: A tricky thing to this problem is converting the nautical miles (NM)
to kilometers. (Since the US Navy was engaged in our first satellite programs, it is not
uncommon to see orbital parameters expressed in NM.) The conversion goes like this, adding
the mean radius of the Earth to get apogee and perigee distances ~

10,000 km
5400NM

r =h, + R, = (200NM) 22 000km
5400 NM

r, =h, +R. = (800NM) +6366km ~ 7847 km and

+6366km ~ 6736 km.

Now we can find the semi-major axis as the arithmetic mean of r, and r,:

A r,+r, 7847 km+6736 km
2 2

Before finding the semi-minor axis, we solve for the eccentricity as ~

a_C_ =T, 7847km—6736km
a r,+r, 7847km+6736km

~ 7292 km.

~0.0762 (almost circular).

From the eccentricity, we could calculate the focal distance, ¢ =ag, and plug it in to find the

semi-minor axis from
b?+c?=a’ = b=+a’-c?,

but instead we’ll make the substitution (some algebra left to the student):

b=va’-a%? =a\1-6° = ra;rp

which is the geometric mean of r, and r,. Thus,

b =(7847 km) (6736 km) ~ 7270 km



Using Kepler’s Third Law, we can easily calculate the satellite’s period ~

2 2
P =\/ o= \/ A7 0 ~ \[(9.895x10°°s7km *)(7292km)° ~ 61945 ~103" 14° ~1"23"14°.
Gy M. He

Next we will calculate the specific energy as ~

e (3.99x105km3s-2){msmﬂlkg

®" 2a (2)(7292km) | 1km | | kg

}z ~2.74x10"J-kg™

where the conversion factors are necessary to make the units work out right. From the energy,
we can calculate the satellite’s speed at apogee (and perigee):

2

e oy 2(E5p+ﬁj

o2 r
r 72 5 3e—2
v, = [2| B, + 2 | = [2| ~27ax107 1| kM, 399A0KMS T g gy
r, kg| 10°m | 7847 km
r 72 5 3.-2
v,= |2 B+ | = [o| 2.74x007 1| 2K |, 399 A0KMS g ggpm
r kg 10°m | 6736 km

Then its specific angular momentum is:

rv, =(7847 km)(6.85 km-s ™) ~5.38x10*km’s™ or
,

(e
lo (6736 km)(7.98 km-s™) ~5.38x10'km’s ™.

Vi

p

11-3. Using Ellipse Dimensions. For a certain Earth satellite it is known that its semi-major
axis is a ~ 30 x 10° ft, and its orbital eccentricity is 6 ~0.2. Find its perigee and apogee
distances, rp and ra, from the center of the Earth, and its period, specific energy, and specific
angular momentum. Also, calculate its distance from the center of the Earth when its true
anomaly is 6, =45°, 90°, and 135°.

SUGGESTED SOLUTION: (Apologies for giving a distance in feet, but that was not
uncommon in the Mercury/Gemini/Apollo era.) Convert the 30 million feet into 9144 km, and
press on with the calculation. First, the apogee and perigee distances are

r, =a(l+¢é)~ (9144 km)(1+0.2) =10,970km
r, =a(l-€)~ (9144 km)(1-0.2) ~ 7315km.

The period is straightforwardly calculated:

2 2
P :\/ 4r ad = \/472’ ad ~ \j(9.895><10*552km*3)(9144km)3 ~ 86085 ~144™ 5&° ~ 2" 24M 58"
G M. L



The specific energy is:
c :_ﬁz_(3.99x105km35’2) 10°m | [ 1kg
¥ 2a (2)(9144km) | 1km | | 1kg

where the conversion factors are necessary to make the units work out right. From the energy,
we can calculate the satellite’s speed at apogee (and perigee):

}z—2.18><107\]-kg1

2

Espzv——ﬁ = V= 2(E3p+ﬁj
2 r

r g|10°m | 10,970 km

r 72 51 3a—2
v,= [2| E, + 4 | = [o| 2.18x107 1| Ik | 399AOKMS 71 g 94 51,
r kg 10°m | 7315 km

Then its specific angular momentum is:

B 12 5132
v, = 2[E5p+ﬁj_\/2[—2.18x107ki Lkm |, 39910k | 5 4okm.st

(., =1V, =(10,970 km)(5.40 km-s*) ~5.92x10*km’s™ or
0y, =1V, =(7315km)(8.09 km-s™*)~5.92x10"km’s *

Lastly, the satellite’s distance from the center of the
Earth at various anomalies is found by ~

a(1-¢*) r(135%)
e = o
") ecose, L(45°)
45 (9144 km)(1-0.2%)
r4s°)=
(45°)= 1+(0.2)cos45°
(9144 km)(1-0.22
r(90°)_ )(E )

~ 7691 km,

~ 8778 km, and
1+(O 2)cos90°

0 5
1000 km

(9144 km)(1- 0.22)
r =
( ) 1+(0.2)c03135°

~ 10,224 km.

The sketch on the right shows the satellite orbit to scale, compared to the Earth. Incidentally, the
position of the satellite at 90° marks what is known as the “latus rectum” or “line at right angles
(to the major axis through a focus)” of an ellipse. It is usually designated as p, and is given by
p=a(l-¢€)=a(1-é)(1+8).

11-5. A Kinematics Problem. A sounding rocket is fired vertically from White Sands Missile
Range (WSMR). It achieves a burnout speed of vgo ~ 10,000 ft/sec at an altitude above sea level

of zgo = 100,000 ft. Neglecting atmospheric drag, determine the maximum altitude the missile
attains.



SUGGESTED SOLUTION: Remember the days of freshman physics when you solved motion
problems with kinematics equations? Back then we used one-dimensional equations ~

a=-g, v=v,+a(t-t), z=2z,+v,(t—t,)+ia(t-t,)> and v'-v’=2a(z-z,).
The last equation (without time in it) would seem to work here where we identify
v, =10,000 f%e c= 3.048kms™, z,=100,000ft =30.48km, and a=-9.81x10°kms>.

(Recall the acceleration is negative because altitude, z, is positive upward.) We then setv =0 at
altitude z when the rocket reaches the top of its trajectory, and solve:

(3.048 kms™)?
(2)(—-9.81x10° kms™)

2
z:zo—\2/—0:30.48km— ~504 km.
a

The sharp-eyed of you will notice that the kinematics equation we used, which can be

dv
. a dv . . .
derived from — = A =—, Is exactly the same as the conservation of energy equation we also

dz/
v At dz
used in freshman physics: 1mv? —mgz =1mv; —mgz, where we have multiplied throughout by

mass. That is, the sum of mechanical energies — motion (kinetic) and position (potential) — is
constant in the absence of dissipation. We have that situation here (because we are ignoring air
drag), BUT it is likely that the acceleration is not constant. Recall that from the gravitational

force FG:ma:GNMEm:m”E we have a:ﬂ—,f where r=R. +z and . =G M. Since
r

r r
our preliminary calculation suggests that 2/, =~ 504 km ~8% we can expect that our
Re 6370 km

answer could be in error by about this amount.
To make a long story short, we need to use the correct form for the potential energy,

U= I Fdr = I%dr = —% which gives us the specific energy equation we introduced:

VioMe Vo fe . Me Vo Me
2 r 2 x Re+z 2 R.+1,
Solving for altitude:
2p: (Re + 7))

E

21 _VS(RE +2,)
and substituting s = (6.6732x107%° km®s™)(5.979x10* kg) ~ 3.9899x10° km*s and

Re = 6366.2km [that is, using a few more digits of precision] we get

(2)(3.9899 x10°km®s 2)(6366.2 km +30.48 km)

~ o i —6366.2km ~545km .
(2)(3.9899x10°km®s 2) — (3.048kms )?(6366.2 km +30.48 km)

Sure enough, as advertised our answer is about 8% larger!



11-7. Sidereal Timekeeping. At noon (local mean time) on 21 June, a satellite in a highly
elliptical orbit (HEO) is nearly overhead of Nenana, Alaska (64.5N, 149.1W). The satellite
makes two revs per day on a repeating ground track. When the satellite is at exactly the same
point in the sky (relative to the background stars) again on 21 September, 21 December, 21
March, and 21 June (the next year) approximately what [local mean] time is it in Nenana?

SUGGESTED SOLUTION: Since a sidereal day (23" 56™ 4.090524°) is 3™ 55.909476°
(235.909476 s) shorter than a solar day, the satellite appears in the same place in the sky (relative
to the star background) approximately four minutes EARLIER each day.

From 21 June to 21 September is 92 days, so the satellite will return roughly 368 minutes
before noon, or at about 6 AM. To get this answer a little closer, multiply: 235.909476 sx 92 ~
21,703.671792 s ~ 06" 01™ 43.671792° earlier, which is 05:58:16.328208 in the morning.

From 21 September to 21 December is 91 days, so the satellite will return in roughly
another 364 minutes earlier, or about midnight. To get this answer a little closer, multiply:
235.909476 sx 91 ~ 21,467.762316 s ~ 05" 57™ 47.762316° earlier, which is 00:00:28.565892, or
only about a half minute past midnight.

From 21 December to 21 March (assuming a non-leap year) is 90 (calendar) days,
HOWEVER, notice the following. Two satellite revs later, the clock in Nenana has advanced
one sidereal day, but the local mean time is 23:56:32.656416, or about three and a half minutes
before midnight. There are two instances of the satellite being in the same place in the sky on 21
December!!! Therefore, on the 90™ calendar day (21 March), the satellite will have passed
through 91 sidereal days, and the local mean time in Nenana is about 6 PM. To get this answer a
little closer, multiply: 235.909476 sx 91 ~ 21,467.762316 s ~ 05" 57™ 47.762316° earlier, which
is 00:00:28.565892, or 18:02:40.803576.

From 21 March to 21 June is 92 days so the satellite will return in roughly another 368
minutes earlier, or about noon again. To get this answer a little closer, multiply: 235.909476 sx
92 ~ 21,703.671792 s ~ 06" 01™ 43.671792° earlier, which is 12:00:57.121784.

COMMENT: It might occur to you to ask why this is about a minute off from returning at noon
where it started a year ago. The difference is in the leap year: the Earth makes about 365.25
revolutions in a year whereas the satellite passes through about 366.25 sidereal days. In
approximately four years, the Earth will have rotated one extra time, and the satellite will have
passed through an additional five sidereal days, so in four years, the satellite will again return to
overhead at just about noon on the 21% of June.

11-9. Revisit. What are the field of regard (FOR) and orbital period, P, of a sensor on a satellite
in low earth, circular orbit at 830 km altitude? If the inclination of the orbit is 0°, should the
sensor be able to see Quito, Ecuador (latitude ~ 0°) on two successive passes? (What other
condition on the sensor is necessary? HINT: What is it’s FOV, and how is it oriented?) If the
inclination of the satellite’s orbit is 60°, will the sensor be able to see Quito, Ecuador on two
successive passes? [HINTS: The second part of the question may seem daunting, but consider
the worst case inclination (90°). Then you will need to calculate the rotational speed of the Earth
as it spins about its axis. Also, you need to remind yourself of the other condition on the
sensor’s FOV that is necessary. |



SUGGESTED SOLUTION: First, see the scale drawing which — S

is a cross-section view: the satellite is at S and the center of the R —° “R
Earth is at O. The satellite’s FOR extends to the horizon all T N }Rh T
around at tangent point T. Since we know R ~6370 km and oo .
0S= Rz +h~7200 km, we can solve for R, 5, and @in triangle }; }?
OTS: N\ /
R = (R, +h)* ~RZ = /72007 - 63707 ~ 3360 km, AR
B =cos™ Re |_ cos‘l(@) ~ 27.8° and N/
R:+h 7200 \/
o}

6 =90°—- 4 =90°-27.8°~ 62.2°.

There are various ways that we can now express field of regard. (1) In angular measure, it is not
uncommon to see FOR given as 26 =124.4°. (2) In linear measure, the ground distance from

horizon to horizon could be quoted as 2NT = 2R. 8 =2(6370 km)(27.8°)(F7SOJ ~ 6180 km.

(Note that this is less than twice the slant range to the horizon.) (3) It is also acceptable to give
the surface area under the satellite (where the formula is given without proof, but recall how to

calculate a solid angle) as: A =27zRZ(1—cos B) =27 (6370 km)2 (1-c0s27.8°) ~ 2.94x10" km?.

The period is a little easier to calculate from Kepler’s third law:

2 2
p= [47 a0 = A (7200 km)? ~ 6080 ~1.69 hr
e 3.99x10° km’s

When this sensor is in an equatorial orbit (inclination = 0°) of course it could see a target
located on the equator (Quito, Ecuador) on two successive passes. In fact it should be able to see
Quito on every pass. But the problem stem hints that there is another condition that we need to
consider here. It is simply that we must have that the sensor is capable of pointing at Quito.

This will certainly be the case if the sensor is fixed nadir pointing or is a pushbroom type of
configuration. Some whiskbroom type configurations may also have the correct properties to be
able to point in the right direction at the right time.

For the next part of the problem, let’s consider how far the Earth will rotate during one
orbital period. This is the distance that the ground track of the LEO appears to drift to the West.
Since the Earth makes one complete rotation (360°) in one sidereal day (23.9345 hours), we

[e]

have that it rotates &x1.6881hr ~ 25.4° in that length of time. That is, our sensor will
23.9345hr

cross the equator approximately 25.4° further west on each pass. If we compare this to the fact
that the FOR subtends 2/ ~55.6° from the center of the Earth, then a little thought convinces us
that any location on the equator should be visible from the satellite on at least two successive
passes — some sites will be visible on three successive passes. The condition we have to watch
out for, however, is again whether our sensor has sufficient freedom from its perch on its
platform to swivel around and point at an intended target within its FOR.



11-11. Analytic Geometry. From the definition of an ellipse ~ namely that an ellipse is the locus
of a point, P, in two-dimensional space such that the sum of the distances from the point to two
other points, called foci (c and —c), is a constant ~

A. Derive the standard equation for an ellipse centered on
2 2

the origin in the xy-plane: X—2+§ =1, where a and b are the
a

semi-major and semi-minor axis dimensions, respectively (with
the major axis on the x-axis and the minor axis on the y-axis); and

B. From the standard equation derive

p the polar form for the ellipse with the
‘ origin at the right-hand focus (c) and the angle measured counter-
: ‘ £ clockwise from the x-axis: r = _ P , Where p is the semi-latus
1+¢€cosé
rectum and &= = is the eccentricity.
a
SUGGESTED SOLUTION: There is some preliminary work to do 1

Y=

Y
before tackling the problem, working with the definition of an ellipse: f\
d +d, =K, \ . a a
where d_ and dg are the distances to P from the left [(x,y) = (-c,0)] and

right [(x,y) = (c,0)] foci, respectively, and K is the constant sum.

First, move P to the farthest-most point on the x-axis to the
right [(x,y) = (a,0)]. Then, by inspection, d R

d =a+c and d,=a-c, \ ¢

AY

o
\\——\.
=y

so that
d, +d;=(a+c)+(a—-c)=2a=K.

Thus the value of K is determined.
Second, move P to the top-most point on the y-axis [(x,y) = (0,b)], and from symmetry note that
d, =d, suchthat d, +d,=2d, =2d,=2a.
Thus with d, =d; =a in this instance the Pythagorean Theorem tells us
a’=b*+c?

since a is the hypotenuse of a right triangle whose legs are b and c.

A. Finding the standard equation of an ellipse centered on the origin is now just a matter
of grinding through the algebra. Taking P to be any point on the ellipse as (X,y), proceed as
follows:



d +d;=2a
\/(x+c)2+y2+\/(x—c)2+y2:2a
(x+c)2+/y{=4a2—4am+(x—c)z+y[
x{+20x+/:4a2—4am+x[—2cx+/
Aox— Aa? = fa|(x—c) +y?
c2x2—2a2cx+a4:az[(x—c)zjtyz}

2% — 280X +a* =a’x? — 2a%Cx +a’c’ +a’y’

(az_cz)xz+a2y2 :az(az_cz)

b2X2 + a2y2 — a2b2

XZ y2 B
PRIV Q.E.D.

<]

B. To transform the standard equation into polar coordinates, first translate the origin to
the right focus, (x,y) = (c,0), to establish a parallel set of axes, (X, ¥):

X =X —c} {x =X+cC
. & o
y=y y=y
Thus the standard equation becomes
o 2
—(X;C) +§=1.

Before going farther, note at this point that when X=0 we have

2
+

2 2 2.2 2
R &)

2 2
e (1—%}(1—%] =a?(1-¢?) = p?

which is the semi-latus rectum, p, and where we have used the definition of eccentricity.

vy

2
2

mN| o
O

which leads us to

With that out of the way, now consider a transformation into polar coordinates:



o2, o2 AY
r=x t y X =rcoséd
tan9=¥ y=rsind -
% d, ~p
Referring to the figure at right, next calculate the sum of \ X
the distances from the foci to a point on the ellipse (that -2¢ -

is, apply the definition again) where d, =r and d is
found using Pythagorean Theorem again:

d +dg :\/(rsin@)z+(2c+rcosé?)2 +r=2a.

The rest is now just a matter of slugging through the algebra (and using a trig identity):

Jr2sin? @+ 4c? + 4crcosé + r>cos?6 = 2a—r

\/rz(sinz 0 +cos’ 9)+4c(c+ rcosg)=2a-r

\jrz +4(c2 +er cos@) =2a-r

/+X(c2+crc059):ﬁ«a2—3&ar+y{

r(a+ccosf)=a’-c’

CZ
S e az(l_azj _a(1-¢)

a+ccosé a(1+;cosHJ 1+£cosd

P
1+¢€cosé Q.E.D.

COMMENT: Since p= a(l—az) =a(1+¢)(1—¢), we can easily show the perigee and apogee
distances:
When =0: r =w:a(l—(€)s r,, and
1+&(+1)
a(1+ 8)(1—8)

when @=7: r=
1+e(-1)

:a(1+s)z r,.



